Принцип работы кулера для компьютера


Устройство кулера или как работает вентилятор обдува?

В статье описывается принцип работы и устройство вентилятора компьютера/ноутбука. Не сказал бы, что содержание статьи окажется жизненно необходимым для пользователей, однако небольшой мастер-класс по устройству начинки вашего программно-цифрового друга не помешает никому.

Итак, есть компьютер – значит есть и система охлаждения некоторых компонентов. В том числе и активная, которая подразумевает ряд приспособлений для принудительного теплоотвода. А значит, как минимум несколько шумящих вентиляторов в компьютере гарантировано. Какие типы вентиляторов обдува электронных компонентов бывают, вам известно по статье Кулер: основные понятия. Сейчас речь о его начинке.

Устройство кулера: разбираем.


Большинство вентиляторов поддаются демонтажу и ревизии. Снимем наклеенный шильдик со стороны проводов, открыв доступ к пластиковой/резиновой заглушке, которую и извлекаем:

снять наклейку и заглушку с кулера

Подцепим пластмассовое или металлическое полукольцо любым предметом с острым концом (нож канцелярский, часовая отвёртка с плоским шлицем  и т.п.) и снимаем с вала. Взору открывается моторчик, работающий от постоянного тока по бесщёточному принципу. На пластиковой основе ротора с крыльчаткой по кругу вокруг вала закреплен цельнометаллический магнит, на статоре – магнитопровод на медной катушке. При подаче напряжения на статор вал кулера начинает вращаться. Номинал напряжения – 12 Вольт:

Щёточных механизмов для кулера я не видел. Есть подозрение, что у всех таких вентиляторов бесщёточный механизм вращения: это, всё-таки, надёжность, экономичность, низкая шумность и возможность регулировки. Но перед тем, как перейти к электрической схеме, вспомним, что кулеры бывают нескольких типов по принципу подключения:

  • 2-пиновый
  • 3-пиновый
  • 4-пиновый

Однако помните. Если, например, вас заинтересует установленный внутри датчик, кулером, скорее всего, придётся пожертвовать. Почти все эти устройства неремонтопригодны.

Устройство кулера 2-pin

Простейший кулер с двумя проводами. Наиболее частая цветность: чёрный и красный. Чёрный – рабочий “минус” платы, красный – питание 12 В. Его, кулера,  назначение – дуть что есть сил по принципу “включился-выключился”:

устройство кулера

где

  • катушки создают магнитной поле, которое заставляет ротор крутиться внутри магнитного поля, создаваемого магнитом
  • датчик Холла оценивает вращение (положение) ротора.

Некоторые из таких кулеров ещё выпускаются и с 4-х пиновым молекс-разъёмом, подразумевая возможность питаться напрямую от блока питания.

Устройство кулера 3-pin

Это – наиболее распространённый тип обдувальщика. Если с минусом и 12 вольтовым проводами вы знакомы, то здесь появляется третий, “тахо”-проводок. Он садится напрямую на ножку датчика, и схема принимает вид:

устройство 3 штырькового кулера

Да, в своё время это была настоящая инновация – отслеживать скорость оборотов машины. Пригодилась она и пользователям компьютеров. И вот здесь в цветности проводов начинается разнобой, в котором, впрочем, есть тенденции. Мне почти всегда встречались кулеры с такой цветностью проводов на разъёме:

распиновка кулера компьютера

Источник: computer76.ru


ВЕНТИЛЯТОР

В персональных компьютерах используются вентиляторы выполненные на основе двухфазного вентильного двигателя постоянного тока с внешним ротором. Остановимся подробнее на устройстве и принципе работы вентильного двигателя. Применение обычного коллекторного двигателя постоянного тока в компьютере недопустимо, т.к., во-первых, он является источником электромагнитных помех, а, во-вторых, требует систематического ремонта, связанного с механическим износом щеток. Поэтому применяются вентильные двигатели в бесколлекторном варианте исполнения. В таком двигателе на роторе расположены постоянные магниты, создающие магнитный поток возбуждения, а обмотка якоря расположена на статоре (обращенная конструкция). Питание обмотки статора осуществляется таким образом, что между ее намагничивающей силой и потоком возбуждения сохраняется смещение в 90 градусов. При вращающемся роторе такое положение может сохраниться в результате переключения обмоток статора. При переключении должны выполняться два условия, согласно которым обмотки статора должны переключаться в определенный момент времени и с заданной последовательностью. При этом положение ротора определяется с помощью датчика положения, в качестве которого обычно используется датчик Холла. Датчик положения управляет работой электронных ключей (транзисторов). Таким образом электронная схема составляет неотъемлемую часть бесколлекторного вентильного двигателя, поскольку без нее невозможна его нормальная работа.


Рассмотрим принцип действия элементов Холла.
При протекании электрического тока по полупроводниковой пластинке, расположенной перпендикулярно магнитному полю, в пластинке наводится ЭДС Еh, направление которой перпендикулярно как току , так и магнитной индукции В (рис. 1.1). Поскольку ЭДС действует на заряженные частицы (электроны или дырки) в соответствии с правилом левой руки, то заряженные частицы смещаются к левой стороне полупроводниковой пластинки. Полярность ЭДС зависит от типа проводимости полупроводника (р— или n-тип) и направления вектора магнитной индукции В.

Изображение
Рис. 1.1. Эффект Холла: а) — в полупроводнике p-типа, б) — в полупроводнике n-типа. 1 — электроны, 2 — дырки.

Значение ЭДС, называемой напряжением Холла, определяется как:

Eh=—(l/d)*B*Ic*Rh,

где Rh – постоянная Холла; Ic – ток через пластинку; В – магнитная индукция; d – толщина пластинки.

Полупроводниковые приборы, предназначенные для определения магнитных полей, называются датчиками Холла. В современных вентильных двигателях постоянного тока широко применяются датчики Холла n-типа на основе InSb и GaAs.


Рассмотрим принцип определения положения ротора с помощью датчика Холла.
На рис. 1.2 показана эквивалентная схема датчика Холла, представленная в виде цепи с четырьмя выводами. Как было показано выше, при
протекании управляющего тока или тока смещения Ic, от вывода 3 к выводу 4 элемента Холла, помещенного в магнитное поле, вектор индукции которого перпендикулярен плоскости элемента, на выводах 1 и 2 элемента наводится холловское напряжение Eh. Если предположить, что R1=R2 и R3=R4 и принять вывод 4 за общую точку схемы, то потенциалы выводов 1 и 2 равны соответственно Eh/2 и -Eh/2. Далее при изменении направления магнитного поля меняется полярность наводимого на элементе напряжения, что показано на рис. 1.3. Поэтому если разместить элемент Холла вблизи ротора с постоянным магнитом, то этот элемент точно выявляет положение полюсов
и значение магнитной индукции, генерируя выводные напряжения Еh1 и Eh2.

Изображение

Вентильный двигатель постоянного тока с элементом Холла.
На рис.
4,а показан простейший вентильный двигатель постоянного тока с элементом Холла, расположение которого изображено на рис.1.4,б. Для управления токами в обмотках W1 и W2 выходные сигналы датчика Холла поступают на вход транзисторов VT1, VT2. На рис. 1.5 показаны следующие состояния вращающегося ротора:
а) элемент Холла определяет северный полюс постоянного магнита ротора и подключает обмотку W2 таким образом, что на полюсном башмаке обмотки образуется южный полюс, вызывающий вращение ротора против часовой стрелки (так как разноименные полюса притягиваются) (рис. 1.5,а);
б) элемент Холла выходит из-под действия магнитного поля, что приводит к запиранию обоих транзисторов и обесточиванию обмоток W1 и W2. Ротор продолжает по инерции вращаться против часовой стрелки (рис.1.5,б);
в) элемент Холла определяет южный полюс ротора и подключает обмотку W1 таким образом, что на полюсном башмаке обмотки образуется южный полюс, притягивающий северный полюс ротора, и продолжая таким образом вращение ротора против часовой стрелки (рис.1.5,в).

Изображение
Рис. 1.4. Принцип действия вентильного двигателя постоянного тока, использующего элемент Холла.

Изображение
Рис. 1.5. Создание электромагнитного момента, вращение и коммутация обмоток двигателя.


"Мертвые точки".
Из рис. 1.5 следует, что при вращении ротора существуют две "мертвые точки", при которых элемент Холла не может определить направление магнитного поля (линии поля направлены параллельно датчику), а значит в обмотках не протекают токи, создающие электромагнитный момент. Следовательно, существует вероятность остановки такого двигателя в "мертвой точке". Пройти такую точку ротор может только по инерции и лишь при малом значении момента трения на валу. Проблема "мертвых точек" является главным
недостатком вентильных двигателей. Основным методом устранения "мертвых точек" в двухфазных вентильных двигателях является использование пространственного гармонического магнитного поля. Получение такого поля достигается либо с помощью неравномерного воздушного зазора между ротором и статором, либо с помощью дополнительных полюсов статора и намагничивания ротора в последовательности N0SN0S (0 — область ротора с отсутствием намагничивания, N,S — области ротора, намагниченные северным и южным полюсом соответственно). Не вдаваясь в дальнейшие подробности, отметим лишь, что на практике встречаются двигатели как первого, так и второго типа. На рис. 1.6,а,б показаны поперечные сечения обоих типов двигателей.


Изображение
Рис. 1.6. Сечение двухфазного вентильного двигателя с внешним ротором:
а) — с неравномерным воздушным зазором; б) — с дополнительными неподвижными полюсами;
1 — ферритовый постоянный магнит ( а) — 4 полюсный, б) — намагниченный в последовательности NS0NS0; 2 холловская интегральная схема; 3 — магнитопровод (ярмо) якоря; 4 — магнитопровод статора; 5 — обмотка статора.

Холловская интегральная схема (ХИС).
Для усиления выходных сигналов датчика Холла совместно с ним необходимо использовать один или более транзисторов. В настоящее время на одном кристалле устанавливают как элемент Холла, так и некоторые электронные схемы, образуя холловскую интегральную схему (ХИС). Внешний вид типичной ХИС, а также ее функциональная схема, показаны на рис.1.7.

Изображение
Рис. 1.7. Холловская интегральная схема (ХИС) (а) и ее функциональный состав (б): 1 — элемент Холла; 2 — дифференциальный усилитель; 3 — выходной каскад.


Выходной сигнал датчика Холла 1, предварительно усиленный операционным усилителем 2, поступает на вход выходного каскада 3. Выходной сигнал ХИС управляет состоянием силового транзистора, регулирующего токи в обмотках двигателя.

Существуют два типа ХИС: линейные и релейные. На рис. 1.8 изображены характеристики чувствительности ХИС обоих типов. Выбор типа
ХИС зависит от конструкции и области применения двигателя.

Изображение
Рис. 1.8. Характеристики ХИС линейного (а) и релейного (б) типа.

SU8025-M.
Рассмотрим в качестве примера работу принципиальной схемы двигателя вентилятора Super-Ultra модель SU8025-M (Тайвань) (рис. 1.9). Этот двигатель имеет следующие основные технические характеристики:
• напряжение питания 12V DC;
• потребляемый ток 120mA.

Изображение
Рис. 1.9. Принципиальная электрическая схема двухфазового вентильного двигателя SU8025-M (SUPERULTRA, TAIWAN).

ХИС HG типа UF1301 управляет состоянием транзисторов Q1, Q2. Транзисторы работают в ключевом режиме и состояние их всегда противоположно. Поэтому ток протекает через обе фазы обмотки статора поочередно, т.к. эти фазы подключены к коллекторам Q1, Q2. Обмотка статора состоит из четырех катушек, при этом обмотки первой и второй фаз наматываются совместно таким образом, как это показано на рис. 1.10. Магнитные полярности этих обмоток у каждого из полюсов двигателя противоположны друг другу. Такой тип обмотки называют бифилярной обмоткой. Это позволяет запитывать обе обмотки напряжением одной полярности.

Изображение
Рис. 1.10. Бифилярная обмотка.

В зависимости от положения ротора на выходе 3 ХИС вырабатывается сигнал L— или Н-уровня. Если на выходе ХИС вырабатывается сигнал L-уровня, то транзистор Q1 будет закрыт, а транзистор Q2 открыт. При этом ток, создающий магнитный поток возбуждения, протекает через обмотки фазы В. Когда ротор поворачивается и вектор магнитной индукции, порождаемый магнитным полем ротора, меняет свое направление, то на выходе 3 ХИС вырабатывается сигнал Н-уровня, транзистор Q1 будет открыт, а транзистор Q2 закрыт. При этом ток, создающий магнитный поток возбуждения, протекает через обмотки фазы А, и ротор продолжает вращение в том же направлении.

Из сказанного следует, что при работе двигателя вентилятора через фазы обмоток статора протекают импульсные токи. Поэтому на индуктивностях обмоток возникают выбросы противо-ЭДС при запирании коммутирующих транзисторов. Для сглаживания этих выбросов к коллекторам транзисторов подключены конденсаторы C1, C2. Кроме того, для того чтобы эти выбросы не проникали в шину выходного напряжения +12В, питание на обмотки подается через развязывающий диод D1.

Кроме двухтранзисторной схемы коммутации, изображенной на рис. 1.9, на практике часто встречается трехтранзисторная схема (рис. 1.11).

Изображение
Рис. 1.11. Принципиальная электрическая схема двухфазового вентильного двигателя MD1208PTS1 (SYNONWEALTH ELEC., TAIWAN).

Отличие этой схемы от рассмотренной заключается в том, что управление коммутирующими транзисторами Q1, Q2 осуществляется с помощью транзистора Q3. Сам транзистор Q3 управляется по базе выходным напряжением датчика Холла HG и работает в ключевом режиме, обеспечивая попеременное переключение транзисторов Q1, Q2. В остальном схема работает аналогично двухтранзисторной.

Схема с датчиком оборотов. (3-проводный вентилятор)
На рис. 1.12, изображена схема с выводом от датчика оборотов, такая схема позволяет производить постоянный мониторинг оборотов вентилятора. А в случае остановки или достижения критически малых оборотов вентилятора, современные материнские платы способны подать сигнал тревоги. Для этого из вентилятора выводится третий, как правило желтый провод, и подключается к специально предназначенному для этого входу "sense" на материнской плате. За один оборот вентилятора на выходе "sense" формируется два прямоугольных импульса.

Изображение
Рис. 1.12. Принципиальная электрическая схема двухфазового вентильного двигателя A1225M12S (Thermaltake TT-1225).

Данная схема построена на ХИС ATS276, кроме того, промышленность выпускает ХИС с уже встроенным датчиком оборотов (ATS278). Структурная схема такого ХИС изображена на рис. 1.13.

Изображение
Рис. 1.13. Структурная схема ХИС ATS278.

Линейный метод управления скоростью вентилятора.
При линейном методе, в случае 2-3-проводных вентиляторов, управление скоростью осуществляется путем изменения поданного на вентилятор напряжения. Типичная схема такого регулятора изображена на рис. 1.14,а,б. При использовании данного метода, диапазон регулировки скорости вращения ограничен. При изменении напряжения питания в пределах от 7 до 12 В, скорость вращения будет меняться приблизительно в два раза. С точки зрения КПД, это также плохое решение. Если на вентилятор подано 7В, при напряжении питания 12В, то оставшиеся 5В должны рассеиваться на микросхеме DA1 или резисторе R.

Изображение
Рис. 1.14. Принципиальная электрическая схема линейного регулятора скорости вращения вентилятора.

Управление скоростью вентилятора методом широтно-импульсной модуляции (ШИМ). (4-проводный вентилятор)
Кроме выводов питания, земли и тахометрического сигнала "sense", рассмотренных выше, в 4-проводных вентиляторах (рис. 1.15) есть вход ШИМ. Дополнительный вход нужен чтобы подавать сигнал ШИМ непосредственно на катушки вентилятора, таким образом остальная электроника вентилятора всегда получает питание от +12В, что гарантирует достоверность информации выдаваемую таходатчиком. При управлении методом ШИМ, напряжение, поданное на катушки вентилятора, может быть либо нулевым, либо максимальным – что повышает КПД вентилятора, убирая проблему рассеивания. Скорость вращения такого вентилятора можно замедлить до 10%.
Во всех современных микросхемах, предназначенных для управления вентилятором, частота ШИМ лежит за пределами слышимого диапазона (выше 22,5 кГц), это исключает проблему шума во время коммутации катушек двигателя.

Изображение
Рис. 1.15. Принципиальная электрическая схема двухфазового вентильного двигателя, с управление методом ШИМ.

Иногда, последовательно в цепь питания двигателя вентилятора включают внешний низкоомный резистор, это делается чтобы в случае пробоя коммутирующих транзисторов, ограничить ток через обмотки статора, обладающие малым омическим сопротивлением. Если не предусмотреть токоограничителя, то пробой коммутирующего транзистора может привести к перегоранию обмотки статора и необратимому выходу вентилятора из строя, а также к возникновению режима КЗ в БП.

____________________________________
Использованы материалы:
1. А. В. Головков, В. Б. Любицкий "Блоки питания для системных модулей типа IBM PC-XT/AT" : ЛАД и Н, 1995. – 90 с.
2. http://www.modd1ng.com
3. DN6851
4. ATS276
5. ATS278
____________________________________

Источник: forum.radeon.ru

Введение

Кулеры на процессоры, кулеры на винчестеры, кулеры на видеокарты и системные чипсеты. Прибавьте к этому кардкулеры, системные бловеры и кулеры для ноутбуков. В таком количестве устройств для охлаждения легко можно запутаться, и помаленьку начинаешь верить, что кулеры — основная составляющая сегодняшнего компьютера. К счастью, или к сожалению, но пока что это не так, и на сегодняшний день ещё нет необходимости обвешивать Ваш любимый ПК шумными вентиляторами до тех пор, пока он не взлетит. В этой статье мы постараемся разобраться, что же в компьютере является источниками тепла, какие существуют способы охлаждения этих компонентов, и надо ли вообще бороться с повышенной температурой компьютера.

Теоретические основы охлаждения

Итак, немного теории. Из курса физики известно, что любой проводник, по которому протекает электрический ток, выделяет тепло. Это означает, что абсолютно все составляющие компьютера, начиная от центрального процессора и заканчивая проводами питания, подогревают окружающий воздух. Количество теплоты, выделяемое тем или иным компонентом компьютера напрямую зависит от его энергопотребления, которое, в свою очередь, определяется множеством других факторов: если мы говорим о жёстком диске, то мощностью электромоторчика и электроникой контроллера, а если о процессоре или другом чипе, то числом интегрированных в него элементов и технологическим процессом его производства. Такова физика нашего мира, и от этого никуда не деться. Но ведь никому до сих пор не пришла в голову идея клеить радиаторы на электрические провода и обдувать, скажем, внутренние модемы! Это потому, что различные компоненты компьютера влияют на температуру в корпусе по-разному, и если такое «холодное» устройство, как модем не требует никакого дополнительного охлаждения, то той же самой видеокарте мы уделяем слишком много внимания, поэтому на современные платы и ставят огромные кулеры, иногда даже с двумя вентиляторами.
Но прежде всего, давайте повторим, что же такое кулер. Кулер (от англ. Cool — холод) представляет собой устройство для охлаждения чего-либо. Основной задачей любого кулера является снижение и поддержание температуры охлаждаемого тела на заданном уровне. И в зависимости от типа охлаждаемого устройства, будь то транзистор, чип, процессор или даже винчестер, применяются различные типы кулеров. В нашем понятии кулер укрепился, как «большая железяка с пропеллером», и чем она больше, тем она лучше. Однако, кулеры могут представлять из себя и более сложные устройства, стоимостью сотни долларов. Обычно, кулеры, применяющиеся в компьютерах, состоят из вентилятора, радиатора и крепления.

Радиаторы

Радиатор (от англ. Radiate — излучать) служит для отвода тепла от охлаждаемого объекта. Он находится в непосредственном контакте с охлаждаемым объектом, и его основная функция — принять на себя часть выделяемого телом тепла и рассеять её в окружающий воздух. Как известно, опять же из курса физики, объект отдаёт тепло только со своей поверхности, а это означает, что для достижения наилучшего отвода тепла, охлаждаемый объект должен иметь как можно большую площадь поверхности. В сегодняшних радиаторах площадь поверхности увеличивается за счёт установки большего количества рёбер. Тепло от охлаждаемого объекта переходит к основанию радиатора, а потом равномерно распределяется по его рёбрам, после чего оно уходит в окружающий воздух, и этот процесс называется излучением. Воздух вокруг радиатора постепенно нагревается, и процесс теплообмена становится менее эффективным, поэтому эффективность теплообмена можно будет поднять, если постоянно подавать холодный воздух к рёбрам радиатора. Для этого сегодня используются вентиляторы. Но о них мы поговорим чуть позже.
Радиатор должен иметь хорошую теплопроводность и теплоёмкость. Теплопроводность определяет скорость распространения тепла по телу. Для радиатора теплопроводность должна быть как можно более высокой, потому что зачастую площадь охлаждаемого объекта в разы меньше, чем площадь основания радиатора, и при низкой теплопроводности тепло от охлаждаемого объекта не сможет равномерно распределиться по всему объёму, по всем рёбрам радиатора. Если радиатор выполнен из материала с высокой теплопроводностью, то в каждой его точке температура будет одинакова, и со всей площади его поверхности тепло будет выделяться с одинаковой эффективностью, то есть не возникнет ситуации, когда одна часть радиатора будет раскалённой, а другая — останется холодной и не будет отдавать тепло в окружающий воздух. Теплоёмкость определяет количество теплоты, которое нужно сообщить телу, чтобы повысить его температуру на 1 градус. Для радиаторов теплоёмкость должна быть как можно более высокой, потому что при остывании на один градус тело отдаёт то же самое количество теплоты. Теплоёмкость и теплопроводность радиатора зависят от материала, используемого для его изготовления.
Как видно, для изготовления радиаторов выгоднее всего использовать два материала: алюминий и медь. Первый из-за низкой стоимости и высокой теплоёмкости, а второй — из-за большой теплопроводности. Серебро слишком дорого стоит, чтобы его можно было использовать для создания радиаторов, но даже если не брать в расчёт его высокую цену, благодаря хорошей теплопроводности, этот металл лучше всего применять для изготовления только лишь оснований радиаторов.
Конструкция радиатора также имеет большое значение. К примеру, рёбра могут быть установлены под разным углом к воздушному потоку. Они могут быть прямыми по всей длине радиатора, или рассечены поперёк, они бывают толстые и с заусенцами, если радиатор произведён по технологии выдавливания, или тонкими и гладкими, если он был отлит из расплавленного металла. Рёбра могут быть плоскими, согнутыми из пластин и впрессованными в основание. Радиатор вообще может быть игольчатым, то есть вместо рёбер иметь цилиндрические или квадратные иглы. Сегодня известно, что по конструкции рёбер лучше всего показывают себя игольчатые радиаторы.

Тепловой интерфейс

Радиаторы прилегают своим основанием к охлаждаемому объекту, и тепло от него к радиатору переходит лишь через поверхность их соприкосновения, поэтому надо стремиться, чтобы она была как можно больше. Но даже имеющуюся обычно площадь соприкосновения (к примеру, поверхность ядра процессора) надо использовать на все сто процентов. Дело в том, что при соприкосновении двух поверхностей, между ними остаются мельчайшие полости, заполненные воздухом. Этого невозможно избежать, и какой бы ровной и гладкой не казалась Вам поверхность радиатора, она всё равно имеет трещинки и впадины, где собирается воздух. Воздух очень плохо проводит тепло, а потому эффективность охлаждения будет существенно ниже возможностей радиатора.
Чтобы избавиться от воздушных подушек и увеличить эффективность охлаждения, применяют различные тепловые интерфейсы. Они имеют высокую теплопроводность и за счёт текучести заполняют собой все неровности основания радиатора. В результате, те места, где раньше был мешающий нам воздух, теперь заполнены хорошо проводящим тепло материалом, и радиатор уже работает с максимальной отдачей. Тепловые интерфейсы бывают различных типов: термопасты или проводящие прокладки. Прокладки представляют собой резиноподобные полимерные пластинки, нанесённые на основание радиаторов. При нагреве они изменяют своё агрегатное состояние и размягчаясь заливают собой все неровности. Сейчас термопасты поставляются в комплекте с подавляющим большинством фирменных кулеров. Чаще термопаста просто вкладывается в коробочку с кулером в шприце или маленьком целофановом пакетике. Но бывает, что она уже нанесена на основание радиатора. В этом случае её хватит лишь на одну-две установки, так как собрать её с охлаждаемого чипа или процессора будет сложнее, чем купить ещё один пакетик с пастой. При выборе термоинтерфейса я бы рекомендовал использовать термопасты, а не термопрокладки. Большая текучесть термопаст позволяет им лучше заполнять собой все неровности радиатора, а за счёт использования в своём составе таких материалов, как серебро или алюминий, они обладают более высокой теплопроводностью. Сегодня в продаже можно встретить термопасты с 90%-ным содержанием серебра. И хотя серебро является отличным электрическим проводником, изготовители гарантируют, что термопаста не замкнёт контакты элементов платы или устройства, на которое она нанесена, но всё же рекомендуют не проверять изолирующие свойства их продукта и по возможности избегать попадания термопаст на электрические элементы компьютера.

Вентиляторы

Вентиляторы обеспечивают непрерывный поток воздуха, обдувающий радиатор, превращая менее эффективный процесс излучения в более эффективный — конвекцию. Конвекция — это процесс обмена тепла, отличающийся от излучения тем, что охлаждающий воздух постоянно находится в движении. В активных кулерах он принудительно поступает в радиатор и нагреваясь, рассеивается в окружающей среде. С использованием вентилятора кулер становится намного производительнее, и температура охлаждаемого объекта может падать в два раза, а то и больше, в зависимости от производительности вентилятора. Производительность вентилятора — это основная его характеристика, измеряющаяся в количестве кубических футов воздуха, перегоняемых им в минуту, сокращённо — CFM (Cubic Feet per Minute). Она главным образом зависит от площади вентилятора, его высоты, профиля лопастей и частоты их вращения. Чем эти величины больше, тем большее количество воздуха сможет перегонять вентилятор, и соответственно тем более эффективным будет охлаждение. Сегодня в вентиляторах для компьютерных кулеров нет возможности бесконечно увеличивать ни размеры, ни скорость вращения крыльчатки. Понятно, что вентилятор размером больше 80 мм уже трудно разместить в корпусе, а частота вращения пропеллера напрямую влияет на уровень его шума. Кроме того, больший по размерам вентилятор должен будет иметь более мощный и более дорогой электрический моторчик, что скажется на его стоимости.
Все вентиляторы, используемые сегодня в компьютерах, питаются от постоянного тока, чаще всего напряжением 12В. Для подключения к питанию они используют трёхконтактные Molex-коннекторы (для Smart-вентиляторов) или четырёхконтактные PC-Plug коннекторы.
Разъём Molex имеет три провода: чёрный (земля), красный (плюс) и жёлтый (сигнальный). PC-Plug имеет четыре провода: два чёрных (земля), жёлтый (+12 Вольт) и красный (+5 Вольт). Разъёмы Molex устанавливаются на материнских платах, чтобы система сама могла контролировать скорость вращения вентилятора, подавая на красный провод различное напряжение (обычно от 8 до 12 В), и изменять её в случае необходимости. По жёлтому сигнальному проводу материнская плата получает от вентилятора информацию о частоте вращения его лопастей. Сегодня это стало очень актуальным, поскольку остановившийся на кулере процессора вентилятор может привести к повреждению процессора. Поэтому современные материнские платы следят, чтобы вентилятор всегда вращался, и если он останавливается, то выключают компьютер. Подключение через Molex имеет один недостаток: к материнским платам опасно цеплять вентиляторы с потребляемой мощностью более 6 Вт. Разъём же PC-Plug выдержит десятки Ватт, но при подключении к нему Вы не сможете узнать, работает ли Ваш вентилятор или нет. Сегодня всё чаще вентиляторы имеют в комплекте переходники PC-Plug — Molex, чтобы подключать их к блоку питания, или даже сразу оба разъёма: PC-Plug и Molex, чтобы получать питание от БП компьютера, а по сигнальному проводу Molex-а сообщать материнской плате о скорости работы моторчика.
Также вентиляторы могут иметь различный тип подвески ротора. Для этого используются подшипники скольжения (Sleeve bearing) или качения (Ball bearing). В вентиляторе может быть один или два подшипника, причём иногда в них совмещаются разные типы — Sleeve и Ball. Наиболее надёжными считаются вентиляторы с подшипниками качения (обычные шариковые подшипники). Компании-производители обещают им непрерывную работу в течение 50 000 часов, что составляет более пяти лет, а те же, которые используют подшипники скольжения, обещают жить не более 30 000 часов, около трёх с половиной лет. Сегодня уже существуют вентиляторы с керамическими подшипниками, которым обещают почти что бессмертие — 300 000 часов беспрерывной работы, а ведь это тридцать шесть лет! Однако, с одной стороны, заявленные времена жизни вентиляторов очень редко соответствуют действительности, и зачастую их надо делить на два, а то и на три, а с другой стороны, поверьте мне — тридцать шесть лет компьютер не проживёт. Стоит рассчитывать, что обычный вентилятор может жить год-два. Потом он начинает гудеть, и его надо смазывать, но даже смазка решит проблему лишь на время, и в скором времени вентилятор придётся заменить на новый.
Некоторые современные вентиляторы имеют автоматическую регулировку скорости, в зависимости от температуры окружающего воздуха или температуры радиатора. Мы расскажем Вам об одном таком в конце статьи. Практически у всех них датчик температуры стоит непосредственно на самом вентиляторе и может не отражать реальную температуру охлаждаемого объекта. То есть, при повышении температуры процессора, кулер, на котором установлен такой автоматический вентилятор, может только через пару минут повысить свои обороты. Другое дело, это вентиляторы с установленными на них сигнализациями остановки. При снижении частоты вращения ротора ниже определённого предела, специальный электронный блок на проводе вентилятора подаёт громкий писк, и Вы точно знаете, что пришло время выключить компьютер и заменить кулер.

Пассивные кулеры

Пассивные кулеры — это обычные радиаторы, установленные на охлаждаемый объект. Они отводят тепло только излучением, в случае, если не обдуваются какими-нибудь вентиляторами компьютера, и применяются для охлаждения маломощных и малых по размерам элементов, например, чипов памяти или транзисторов. Радиаторы устанавливаются сегодня на видеокарты, некоторые материнские платы, где ещё нет полноценных кулеров, модули памяти, да и вообще практически на всё, что приходится охлаждать, и даже на центральные процессоры, если они имеют малую мощность.
Частный случай пассивного кулера — распределитель тепла. Выглядит он как «лысый» радиатор, полученный из пластины, без рёбер и с небольшой площадью поверхности. Распределители тепла применяют сегодня для охлаждения системной памяти. В частности, компания Thermaltake выпускает специальные наборы для DDR SDRAM DIMM модулей. Недостатком распределителей тепла, как и пассивных кулеров, является их малая эффективность.

Активные кулеры

Активными называются кулеры, работающие за счёт конвекции. Проще говоря, это радиатор с установленным на него вентилятором. Чаще всего они используются для охлаждения процессоров. И сегодня, говоря слово «кулер», мы и подразумеваем, в первую очередь, именно их. Активные кулеры используются практически везде, где требуется охлаждение, заменяя собой обычные радиаторы. Преимуществами такого охлаждения можно назвать значительно большую эффективность в сравнении с обычными радиаторами. Активные кулеры в состоянии охлаждать раскалённые процессоры, имея при этом небольшие размеры. Но вентиляторы всегда являются источниками шума в компьютерах, а иногда и вибрации. Поэтому охлаждать ими надо лишь сильно греющиеся элементы, иначе работать за шумной машиной станет невыносимо. Ещё один недостаток активных кулеров в том, что они недолговечны. Лопасти вентилятора вращаются, и рано или поздно подшипники на роторе выйдут из строя, и он остановится. Естественно, в этом случае охлаждаемый элемент перегреется и, возможно, выйдет из строя. Но чаще всего вентиляторы перед остановкой начинают громко гудеть, так что Вы будете предупреждены заранее.
Теперь, когда мы разобрались в основах охлаждения компьютера, мы можем перейти к рассмотрению источников тепла в компьютере и способов их охлаждения.

Что в компьютере греется, и как оно охлаждается

Ну что же, имея представление о кулерах, давайте теперь составим картину, что же греется в компьютерах, и как это нужно (если нужно) охлаждать. Начнём мы с самого основного элемента любого ПК — центрального процессора. Сегодня охлаждению процессоров уделяется особое внимание, и поэтому каждый производитель кулеров для PC обязательно имеет в своём ассортименте и охладители для CPU.

Процессоры

Если не рассматривать серверные и переносные компьютеры (в том числе и ноутбуки), то сегодня в персональных компьютерах используются процессоры двух компаний-производителей: Intel и AMD. Они используют три основные платформы: Socket 370, Socket 478 и Socket 462 (Socket A). Цифры в обозначении платформы показывают число контактов каждого процессора. Естественно, между собой все эти стандарты не совместимы, и Pentium III под Socket 370 не установишь в материнскую плату с каким-нибудь другим гнездом. До недавнего времени был распространён ещё и стандарт Socket 423 под первые Pentium 4, но с приходом более современного Socket 478, он почти исчез и сейчас успешно забывается. Для каждого типа процессоров существуют свои стандарты кулеров.
В Socket 370 используют процессоры Intel Pentium III, Intel Celeron (кроме новых под Socket 478) и VIA C3. Процессоры же производства AMD (Duron, Athlon на ядре Thunderbird, Palomino и Thoroughbred) используют разъём Socket A. Кулеры для Socket 370 и Socket A почти совместимы друг с другом. Точнее, можно сказать, что они и полностью совместимы, но это не означает, что Вы сможете установить кулер под Athlon на Pentium III. Дело в том, что хотя гнезда Socket 370 и Socket A имеют одинаковые размеры, всё же стандарты, по которым AMD рекомендует строить материнские платы, отличаются от Intel-овских. Прежде всего, посмотрите на фотографию. Гнездо Socket A имеет по три зубчика спереди и сзади для крепления кулера. Изначально подразумевалось, что на процессоры Athlon будут ставиться более мощные охладители, которые потребуют более жёсткое крепление, и один зубчик может сломаться под пружиной кулера. Кроме того, AMD рекомендовала производителям материнских плат оставлять так называемую свободную зону слева и справа от гнезда. В этой зоне не должно быть никаких элементов, которые бы могли помешать установке прямоугольных кулеров длиной более 55 мм (ширина гнезда). Таким образом, на процессоры Athlon и Duron можно устанавливать кулеры размером 60×80мм и высотой насколько позволяет Ваш корпус. На Pentium III, конечно же, такие большие охладители вряд ли станут, но это опять же зависит от материнской платы.
Кроме того, многие материнские платы под Athlon/Duron имеют вокруг гнезда четыре отверстия. Это ещё один способ крепления кулера — не к гнезду, а к материнской плате. С одной стороны, он более удобный, поскольку кулер уже не отвалится, отломав зубчик, а с другой стороны — для его замены или апгрейда процессора придётся снимать материнскую плату. Хорошо это или плохо, но недавно AMD перестала требовать наличия четырёх отверстий в свободной зоне возле гнезда процессора, и все будущие кулеры будут крепиться только к нему, а не к материнской плате.
Процессоры Athlon выделяют до 73 Вт тепла в неразогнанном состоянии. Для мощных серверов такое тепловыделение процессора — обычное дело, а вот для настольных компьютеров это очень много, а к тому же площадь ядра процессора постоянно уменьшается, поэтому охладители для современных процессоров активно используют медь в своих радиаторах. И в продаже Вы сможете увидеть кулеры не только с алюминиевыми радиаторами, но и с медным основанием, или полностью медные. Некоторые производители, пытаясь увеличить эффективность кулеров, покрывают сверху медь ещё и никелем, серебром или другими материалами с высокой теплопроводностью. Вентиляторы на таких кулерах чаще всего имеют размер 60x60x25 мм, хотя сейчас большое распространение получают 70мм и 80мм модели. Они имеют меньшую скорость вращения и работают намного тише.
В случае с охладителями для Socket 370 всё намного проще: все они цепляются за два зубчика гнезда и имеют размеры, не превышающие размеров гнезда. Обычно от 50×50 до 60×60 мм. Тепловыделение процессоров Pentium III примерно в два раза меньше, чем у Athlon, поэтому охлаждать их проще, и на Pentium III чаще всего используются кулеры с полностью алюминиевыми радиаторами или с медным основанием. Они стоят дешевле полностью медных, в которых к тому же и нет необходимости.
Если продолжать разговор про Socket 370 и вспомнить про процессоры VIA C3, то можно и вовсе забыть про кулеры. Дело в том, что VIA C3 имеют репутацию «холодных» процессоров, потому что они выделяют слишком мало тепла и могут работать и с пассивными охладителями — обычными радиаторами, или совсем простенькими кулерами. Для них тепловыделение не проблема, и поэтому компьютеры на их базе работают очень тихо.
Сегодня выгоднее выпускать кулеры для процессоров Intel Pentium 4 и Celeron под Socket478. Дело в том, что рынок охладителей под Athlon уже достаточно насыщен, а к тому же цена на компьютеры с процессорами AMD невысоки, и не каждый пользователь готов дорого заплатить за хороший кулер. С Pentium 4 ситуация совсем другая, так как они стоят намного дороже конкурентов от AMD, и на рынок высокопроизводительных процессоров можно продавать кулеры стоимостью несколько десятков долларов.
В компьютерах с процессорами Pentium 4 и Celeron под Socket 478 кулер крепится к специальной стойке на материнской плате. Есть мнение, что процессоры Pentium 4 вообще не перегреваются. Оно в корне неверно, и первые Pentium 4 действительно грелись слабее своих товарищей Athlon, но сейчас энергопотребление Pentium 4 с частотой 2.8 ГГц находится в районе 64 Вт, а Pentium 4 3.0 ГГц обещает требовать до 80 Вт. Конечно, современные технологические процессы и конструкция Pentium 4 со встроенным распределителем тепла помогают ему лучше бороться с выделяемым теплом, но он также, как и Athlon требует большой кулер. Правда, коробочные варианты процессоров уже поставляются с кулерами, но при необходимости в магазинах можно найти широкий ассортимент охладителей для Pentium 4.
Кулеры под Socket 478 имеют, в основном, один вид крепления: двумя стальными скобами они цепляются за пластиковые упоры материнской платы и крепко прижимаются к поверхности процессора. Иногда от слишком сильных пружин кулера материнская плата слегка изгибается, но по большому счёту это не страшно. Для компьютеров, использующих Pentium 4 в низких или серверных корпусах, существуют кулеры, крепящиеся к материнской плате без использования стоек вокруг процессора.
Так же, как и в случае с некоторыми охладителями под Athlon, в них крепление проходит сквозь отверстия в материнской плате (для этого с неё придётся снять стандартные держатели для кулера) и фиксируется сверху на процессоре. В этом случае на плату подаётся куда меньшая физическая нагрузка. К сожалению, такие кулеры мало распространены.
Под Pentium 4 выпускаются кулеры с различными радиаторами. Здесь есть как чисто алюминиевые, так и с медными основаниями, или полностью медные. Вентиляторы для таких кулеров обычно ставятся тихие, потому что их низкая производительность компенсируется большими размерами радиаторов. Хотя, громкие модели тоже нередкое явление среди охладителей для Socket 478.

Источник: fcenter.ru

Принцип работы

Существуют модели активного, пассивного и жидкостного охлаждения. Последний вид чаще всего используется оверклокерами, так как при разгоне процессора количество выделяемой им теплоэнергии резко возрастает. Для большинства пользователей вполне достаточно будет приобрести активную систему охлаждения, состоящую из двух элементов:

Выбор кулера для процессора

  • радиатора;
  • вентилятора.

Радиатор изготовлен из меди либо алюминия, так как эти материалы обладают высоким показателем теплопроводности. Принцип работы кулера предельно прост. Радиатор соприкасается с поверхностью ЦП и охлаждает ее. Чтобы гарантировать качественный теплообмен, на крышку процессора наносится термоинтерфейс.

Во время активной работы чипа он выделяет довольно много тепловой энергии, и в результате приходится охлаждать сам радиатор. Именно для решения этой задачи и используется вентилятор.

Конфигурация устройства

Для любого процессорного разъема выпускаются различные модели кулеров. В первую очередь они отличаются своей конфигурацией.

Кулер для процессора

Все устройства охлаждения ЦП можно разделить на две большие группы:

  • без тепловых трубок и боксовые решения;
  • устройства с тепловыми трубками.

Первую группу составляют самые простые кулеры, именно они входят в состав боксовых. Главным преимуществом таких устройств является простота установки. При этом они отлично справляются со своей задачей. Недостатком такого девайса можно считать сравнительно высокий уровень шума вентилятора в ситуациях, когда ЦП сильно нагружен.

Во вторую группу входят кулеры, на радиаторе которых предусмотрены тепловые трубки. Это более эффективные устройства охлаждения, но их стоимость выше. А также стоит вспомнить о системах жидкостного охлаждения.

Кулер для процессора выбор

Использовать их в домашнем ПК стоит лишь в том случае, когда планируется разгон чипа. Системы жидкостного охлаждения имеют ряд недостатков:

  • высокая стоимость;
  • громоздкая конструкция;
  • сложная установка;

Впрочем, это не останавливает пользователей, желающих гарантировать максимально эффективное охлаждение ЦП.

Критерии выбора

Правил выбора системы охлаждения ЦП сравнительно мало, но с ними стоит познакомиться. Есть несколько важных технических характеристик, на которые нужно обратить внимание.

Конструкция радиаторов

Сегодня высокой популярностью пользуются девайсы башенного типа. Их легко отличить благодаря расположенному сбоку вентилятору.

Кулер для процессора виды

Такие устройства способны эффективно охлаждать даже самые мощные ЦП. Однако они отводят теплоэнергию только с чипа, и это их единственный недостаток. Дело в том, что во время работы нагревается не только процессор, но и другие элементы системной платы. Впрочем, сегодня производители материнских плат часто устанавливают на свои изделия дополнительные радиаторы, что позволяет устранить недостаток башенных кулеров.

Вторая конструкция радиаторов, С-типа, позволяет охлаждать не только ЦП, но и расположенные рядом с ним элементы. Однако теплоотвод от процессора при этом ухудшается. Перед выбором конструкции кулера стоит определиться с использованием ПК. Оверклокерам стоит обратить внимание на башенные устройства.

Если пользователь собирается использовать компьютер в штатном режиме, то можно применять кулеры С-типа. В такой ситуации даже боксовый кулер может справиться с поставленной задачей.

Габариты и вид процессорного разъема

Выбирая кулер для ЦП, необходимо обратить внимание на размеры устройства. Это связано с тем, что вентилятор должен устанавливаться без демонтажа других комплектующих.

Кулер для процессора установка

В технических характеристиках корпусов для ПК указывается параметр «максимальная высота процессорного кулера». У приобретаемого вентилятора высота не должна превышать этот параметр. А также следует учитывать ширину и длину устройства, чтобы его монтажу не мешали видеокарта и планки оперативной памяти.

Не менее важной характеристикой кулера для ЦП является процессорный разъем. На рынке можно найти системные платы, оснащенные различными типами сокетов. Следует помнить, что процессор может быть установлен только в соответствующий разъем. Например, у последних процессоров компании Intel разъем называется LGA 1151 v.2. Таким образом, перед приобретением чипа необходимо обратить внимание на эту характеристику.

Большинство кулеров, выпускаемых различными компаниями, являются универсальными и могут быть установлены на несколько сокетов.

Тип подшипника и рассеиваемая мощность

Одной из важнейших характеристик кулера является рассеиваемая мощность. Этот показатель показывает, какой процессор способен охладить вентилятор.

Кулер для процессора как выбрать

Каждый ЦП имеет показатель тепловыделения (TDP). Например, у Intel i5−8400 он составляет 65 Вт. Однако пользователю необходимо подбирать кулер с запасом примерно в 30%. В результате для охлаждения i5−8400 вполне достаточно устройства с показателем рассеиваемой мощности в 85−95 Вт.

От типа используемого подшипника напрямую зависит срок эксплуатации кулера. Безусловно, каждый производитель уверяет, что его изделие отличается высоким качеством. Продукты известных брендов чаще всего соответствуют этому утверждению. Наиболее популярными сегодня являются следующие типы подшипников:

Кулер для процессора отзывы

  1. Скольжения. Его конструкция состоит из втулки и вала. Применяются в недорогих вентиляторах и обладают небольшим ресурсом.
  2. Гидродинамические. Улучшенные вариант подшипников первого типа. Более высокий ресурс работы обеспечивается благодаря наличию смазки между валом и втулкой.
  3. Качения. Способны проработать не менее 7 лет, но при этом имеют более высокий показатель шума.

На рынке можно встретить кулеры от различных производителей. Среди пользователей больше всего котируются продукты компаний Zalman, DeepCool, Cooler Master, Thermaltake и нескольких других. Если пользователь не планирует разгонять процессор, то можно использовать боксовый вентилятор. Эти устройства эффективны при штатном режиме работы ЦП и обладают хорошим ресурсом.

Источник: inflife.ru


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.