Простой регулятор мощности на тиристоре ку202н


Здравствуйте, уважаемые хабровчане!

Данный пост посвящен созданию устройства для регулировки мощности бытовых приборов (лампочки, паяльники, обогреватели, электроплитки). Конструкция устройства очень простая, количество элементов минимальное, его способен собрать даже начинающий. Без радиаторов мощность нагрузки до 1 кВт, с использованием радиаторов можно увеличить до 1,5 кВт. Мной устройство было собрано за один вечер. Ниже видео, демонстрирующее работу.

Подробности:

Девайс был размещен в корпусе от старого CD-ROM-а. Для передней и задней стороны корпуса необходимо вырезать пластмассовые стороны 4х14,5 см., и либо прикрутить либо приклеить к корпусу. Девайс в сборе выгладит так:

image

image

Перечень элементов, принципиальная схема и описание работы:

Нам понадобится:

  • Тиристоры: КУ-202Н, М — 2 шт.
  • Динисторы: КН-102А, Б — 2 шт
  • Резисторы: Любые, R=220 Ом, мощностью 0,5 Вт
  • Конденсаторы: 0,1 мкФ, 400 В — 2 шт.
  • Любой переменный резистор сопротивлением 220 — 330 кОм (в случае с 220 кОм нижний предел регулировки будет выше чем 330 кОм)
  • Провод с вилкой для подключения к сети и розетка для подключения нагрузки
  • Для защиты можно добавить предохранитель

Принципиальная электрическая схема выглядит так:

image

Данный регулятор использует принцип фазового управления. Он основан на изменении момента включения тиристора относительно перехода сетевого напряжения через ноль. На начало полу периода тиристор закрыт, ток через него не идет. Через некоторое время (в зависимости от текущего сопротивления переменного резистора) напряжение на конденсаторе достигает уровня необходимого для открытия динистора, он открывается и в свою очередь открывает тиристор. Для второго полу периода все аналогично.
График прохождения тока через нагрузку:

image

Подробности сборки и окончательный вид:

На момент сборки устройства в моем арсенале не было приспособлений для изготовления печатных плат, поэтому сборка делалась на куске старой платы, на которой до этого был какой то прибор. После соединения всех деталей и упаковки всего внутрь корпуса от CD-ROM-а готовое изделие внутри выглядит вот так:


image

image

image

Итоги:

За очень короткое время собрана полезная вещь из старых деталей. Но есть и некоторые недостатки, это то что пределы регулировки немного изменяются в зависимости от нагрузки, наличие радиопомех и некоторая нестабильность на небольшом участке регулировки.

Источник: habr.com

Конструкция

Устройство тиристораКонструктивно тиристор КУ202Н и вся серия выполнены в металлическом корпусе из медного сплава с покрытием, который имеет выводы под резьбу и два вывода под пайку различной толщины и высоты. Размер резьбового отвода или анода (А) составляет М6 под гайку. Выводы выполнены жесткими путем заливки эпоксидной смолой, но при выполнении монтажа не следует применять усилия более 0,98 Н.

При выполнении пайки силового вывода (К) необходимо соблюдать минимальное расстояние до стекла не менее 7 мм , так как высокой температурой его целостность может нарушиться. При выполнении подключения управляющего вывода (УЭ) следует выдержать расстояние до стекла не менее 3,5 мм по той же причине. При этом общее время удерживания паяльника не рекомендуется превышать более 3 с. Эффективная температура жала паяльного инструмента не должна превышать +260 градусов.

Особенности схемного подключения


Тиристор предназначен для коммутации напряжения в различных устройствах. Но при этом имеется стандартная схема его подключения, которую нарушать крайне не рекомендуется. Например, между катодом (вывод под пайку) и управляющим электродом необходимо подключить резистор в качестве шунтирующего компонента. Благодаря его присутствию управляющая цепь замыкается и обеспечивается насыщение перехода. Его сопротивление должно быть не более и не менее 51 Ом.

Если на аноде присутствует напряжение отрицательной полярности, то управляющий ток должен быть равен нулю. Иначе произойдет электрический пробой перехода, что приведет к неисправности всего устройства в целом. Дальнейшая его работа невозможна, как и обратное восстановление.

Технические параметры тиристора

Параметры тиристоровТиристор КУ202Н относится к группе высоковольтных устройств, предназначенных для работы при напряжении до 400 В с максимально допустимым прямым током в открытом состоянии не более 10 А. Всего в линейке имеется 12 моделей тиристоров с различными напряжениями в закрытом состоянии. Поэтому при выборе основным параметром является именно оно.


Для использования в цепях с напряжением от 300 и выше вольт предназначены тиристоры с буквенными обозначениями от К до Н. Что касается остальных параметров, то они остаются теми же. Довольно часто новички радиолюбители сталкиваются с такими проблемами, что приводит к дополнительным растратам.

Эти тиристоры довольно часто применяются в построении регуляторов мощности нагрузкой не более 2 кВт. Но крайне не рекомендуется его эксплуатировать в критических режимах. Следует пропускать через устройство ток не более 7-8 А, что будет обеспечивать наиболее эффективные и щадящие режимы.

Проверка тиристора

Многих интересует, тиристор КУ202Н как проверить и как правильно включить в устройстве для проверки его работоспособности. Дело в том, что довольно часто он оказывается неисправен по различным причинам. Притом дефекты встречаются и у новых изделий.

Проверить тиристор можно несколькими способами:

  • Использовать специальное устройство, которое анализирует параметры всех переходов.
  • Применить мегомметр для проверки состояния основного перехода в обоих направлениях. В обратном направлении должен прозваниваться как обычный диод, в прямом включении он закрыт, в идеальном состоянии его сопротивление должно быть равно бесконечности.

Второй способ применим только к серии устройств с буквенным индексом М и Н. При этом можно устанавливать напряжение прозвонки до 400 В. Устройства с буквами К и Л только до 300 В, Ж и И – до 200 В и так далее. Прежде чем проверять таким способом изделие, необходимо сверить его технические характеристики со справочной таблицей. Иначе можно повредить устройство, даже не использовав его по назначению.

Менее мощные тиристоры могут быть проверены обычным мультиметром в режиме прозвонки (значок диода и звукового сигнала). В обратном направлении он звонится как диод, в прямом – бесконечность.

Важно! При осуществлении проверки тиристора в режиме диода, необходимо УЭ объединить с А.

Проверка в режиме коммутации

Чтобы убедиться в работоспособности тиристора, достаточно собрать небольшую схему включения, состоящую из следующих компонентов:

  1. лампочки или светодиода с соответствующим резистором, если подключается к питанию 12В;
  2. источник малого напряжения, например, пальчиковая батарейка типа АА;
  3. несколько проводников и источник напряжения 12 В.

Для осуществления проверки выполняем следующие шаги:

  1. Подключаем нагрузку в цепь источник питания 12 В и А-К тиристора.
  2. Подаем отрицательное напряжение на выводы УЭ и А (+ батарейки должен подключаться к А) на мгновенье.

После чего лампочка или светодиод загорится. Чтобы он потух, необходимо отключить коммутируемую цепь или сменить полярность управляющего напряжения. Такой режим считается нормальным для работы и может применяться при любых постоянных напряжениях коммутации в разрешенных пределах. В случае с тиристором КУ202Н оно не должно превышать 400 В.

Аналоги КУ202Н


Тиристоры ку202 схемаКак и любые другие устройства, отечественный тиристор КУ202 имеет зарубежный аналог, который по своим параметрам относится к той же категории компонентов. Зарубежные производители давно ушли от производства такого форм-фактора по мощности тиристоров в металлическом корпусе. На рынке будут доступны только элементы в корпусе транзистора ТО220. Поэтому в любом случае придется внести конструктивные изменения в плату и монтажное место в частности.

К зарубежным аналогам тиристора КУ202Н относятся устройства:

  • ВТ138;
  • ВТ151.

Параметры незначительно отличаются от вышеописанного компонента, и средний ток в том числе, равен 7,5 А. Также можно применить в схемах более новый российский элемент Т112-10. Он имеет также металлический корпус с резьбовым отводом, но его размеры будут несколько меньше.

Простые схемы управления КУ202Н

На тиристор КУ202Н схема управления достаточно простая. Первый вариант был описан в разделе проверки устройства. Она включала батарейку на 1,5 В, лампочку и источник питания 12 В. Но также существует масса других способов элементарного подключения тиристора. Рассмотрим самую простую схему на его базе.

Регулятор мощности


Параметры тиристораВ схеме реализован принцип частотно-импульсного регулирования угла отпирания тиристоров за счет синхронизации с сетью. Такое управление является наиболее эффективным и надежным, так как тиристор работает в нормальных режимах без завышения своих возможностей.

В схеме имеется генератор, который формирует импульсы управления и сдвигает их относительно фронтов импульсов при переходе сетевого напряжения через ноль. Управляющая последовательность импульсов подается на УЭ и К. Напряжение в нагрузке выпрямляется при помощи двухполупериодного выпрямителя. Использование емкостей в схеме в качестве фильтров недопустимо, так как они будут нарушать главный принцип работы устройства. Такой регулятор мощности можно применить для управления температурой жала паяльника путем изменения напряжения его питания. Но если потребуется организоваться управления первичными цепями трансформатора, придется включить нагрузку перед диодным мостом. Ток регулирования должен быть не более 7,5 А.


Источник: instrument.guru

Простой регулятор мощности на тиристоре ку202н


На днях понадобился мне простой регулятор мощности, так как для демонтажа деталей из старых плат я использую советский 80 ваттный паяльник, и мне, в такую жару за окном, надоело, через десять минут его работы, обливаться потом, так как он разогревается до безумия, что деревянную ручку уже невозможно спокойно держать в руках.


Основными требованиями к схеме регулятора мощности было: легкость сборки и минимум доступных деталей, которые есть у каждого радиолюбителя в наличии. В итоге на просторах Интернета были найдены две вариации схемы из одного и того же набора деталей. Обе схемы регулятора мощности проверены и работают идентично.


Простой регулятор мощности на тиристоре ку202н


В оригинальной схеме вместо диодного моста использовались 226е диоды, я же поставил диодный мост КЦ402Б.


ристор можно использовать любой имеющийся, смотрите только его характеристики, так как от них зависит максимально допустимая нагрузка и рабочее напряжение. В одном таком регуляторе мощности я использовал тиристор КУ202Н, а в другом, более мощный, Т122-25-6. Конденсатор можно брать до 470мкФ, а переменный резистор 5-10кОм. Постоянный резистор должен быть минимум МЛТ-2, он ощутимо греется в процессе работы регулятора мощности. Так что если Вы используете корпус для данного устройства, обращайте внимание, чтобы резистор не касался пластиковые его частей.


Данный регулятор мощности можно использовать как приставку для разных целей и устройств. Например, он же является простым регулятором яркости светильника и т.д.

Источник: best-chart.ru

Классическая тиристорная схема регулятора

Классическая тиристорная схема регулятора мощности паяльника не соответствовала одному из главных моих требований, отсутствию излучающих помех в питающую сеть и эфир. А для радиолюбителя такие помехи делают невозможным полноценно заниматься любимым делом. Если схему дополнить фильтром, то конструкция получится громоздкой. Но для многих случаев использования такая схема тиристорного регулятора может с успехом применяться, например, для регулировки яркости свечения ламп накаливания и нагревательных приборов мощностью 20-60вт. Поэтому я и решил представить эту схему.


Схема классического тиристорного регулятора температуры паяльника

Для того, что понять как работает схема, остановлюсь подробнее на принципе работы тиристора. Тиристор, это полупроводниковый прибор, который либо открыт, либо закрыт. чтобы его открыть, нужно на управляющий электрод подать положительное напряжение 2-5 В в зависимости от типа тиристора, относительно катода (на схеме обозначен k). После того, как тиристор открылся (сопротивление межу анодом и катодом станет равно 0), закрыть его через управляющий электрод не возможно. Тиристор будет открыт до тех пор, пока напряжение межу его анодом и катодом (на схеме обозначены a и k) не станет близким к нулевому значению. Вот так все просто.

Работает схема классического регулятора следующим образом. Сетевое напряжение переменного тока подается через нагрузку (лампочку накаливания или обмотку паяльника), на мостовую схему выпрямителя, выполненную на диодах VD1-VD4. Диодный мост преобразует переменное напряжение в постоянное, изменяющееся по синусоидальному закону (диаграмма 1). При нахождении среднего вывода резистора R1 в крайнем левом положении, его сопротивление равно 0 и когда напряжение в сети начинает увеличиваться, конденсатор С1 начинает заряжаться. Когда С1 зарядится до напряжения 2-5 В, через R2 ток пойдет на управляющий электрод VS1. Тиристор откроется, закоротит диодный мост и через нагрузку пойдет максимальный ток (верхняя диаграмма).

При повороте ручки переменного резистора R1, его сопротивление увеличится, ток заряда конденсатора С1 уменьшится и надо будет больше времени, чтобы напряжение на нем достигло 2-5 В, по этому тиристор уже откроется не сразу, а спустя некоторое время. Чем больше будет величина R1, тем больше будет время заряда С1, тиристор будет открываться позднее и получаемая мощность нагрузкой будет пропорционально меньше. Таким образом, вращением ручки переменного резистора, осуществляется управление температурой нагрева паяльника или яркостью свечения лампочки накаливания.

Схема классического тиристорного регулятора на тиристоре КУ202Н

Выше приведена классическая схема тиристорного регулятора выполненная на тиристоре КУ202Н. Так как для управления этим тиристором нужен больший ток (по паспорту 100 мА, реальный около 20 мА), то уменьшены номиналы резисторов R1 и R2, а R3 исключен, а величина электролитического конденсатора увеличена. При повторении схемы может возникнуть необходимость увеличения номинала конденсатора С1 до 20 мкФ.

Простейшая тиристорная схема регулятора

Вот еще одна самая простая схема тиристорного регулятора мощности, упрощенный вариант классического регулятора. Количество деталей сведено к минимуму. Вместо четырех диодов VD1-VD4 используется один VD1. Принцип работы ее такой же, как и классической схемы. Отличаются схемы только тем, что регулировка в данной схеме регулятора температуры происходит только по положительному периоду сети, а отрицательный период проходи через VD1 без изменений, поэтому мощность можно регулировать только в диапазоне от 50 до 100%. Для регулировки температуры нагрева жала паяльника большего и не требуется. Если диод VD1 исключить, то диапазон регулировки мощности станет от 0 до 50%.

Схема простейшего тиристорного регулятора температуры паяльника

Если в разрыв цепи от R1 и R2 добавить динистор, например КН102А, то электролитический конденсатор С1 можно будет заменить на обыкновенный емкостью 0,1 mF. Тиристоры для выше приведенных схем подойдут, КУ103В, КУ201К (Л), КУ202К (Л, М, Н), рассчитанные на прямое напряжение более 300 В. Диоды тоже практически любые, рассчитанные на обратное напряжение не менее 300 В.

Приведенные выше схемы тиристорных регуляторов мощности с успехом можно применять для регулирования яркости свечения светильников, в которых установлены лампочки накаливания. Регулировать яркость свечения светильников, в которых установлены энергосберегающие или светодиодные лампочками, не получится, так как в таких лампочках вмонтированы электронные схемы, и регулятор просто будет нарушать их нормальную работу. Лампочки будут светить на полную мощность или мигать и это может даже привести к преждевременному выходу их из строя.

Схемы можно применять для регулировки при питающем напряжении в сети переменного тока 36 В или 24 В. Нужно только на порядок уменьшить номиналы резисторов и применить тиристор, соответствующий нагрузке. Так паяльник мощностью 40 Вт при напряжении 36 В будет потреблять ток 1,1 А.

Тиристорная схема регулятора не излучающая помехи

Главное отличие схемы представляемого регулятора мощности паяльника от выше представленных, это полное отсутствие радиопомех в электрическую сеть, так как все переходные процессы происходят во время, когда напряжение в питающей сети равно нулю.

Приступая к разработке регулятора температуры для паяльника, я исходил из следующих соображений. Схема должна быть простой, легко повторяемой, комплектующие должны быть дешевыми и доступными, высокая надежность, габариты минимальными, КПД близок к 100%, отсутствие излучающих помех, возможность модернизации.

Схема тиристорного регулятора температуры

Работает схема регулятора температуры следующим образом. Напряжение переменного тока от питающей сети выпрямляется диодным мостом VD1-VD4. Из синусоидального сигнала получается постоянное напряжение, изменяющееся по амплитуде как половина синусоиды с частотой 100 Гц (диаграмма 1). Далее ток проходит через ограничительный резистор R1 на стабилитрон VD6, где напряжение ограничивается по амплитуде до 9 В, и имеет уже другую форму (диаграмма 2). Полученные импульсы заряжают через диод VD5 электролитический конденсатор С1, создавая питающее напряжение около 9 В для микросхем DD1 и DD2. R2 выполняет защитную функцию, ограничивая максимально возможное напряжение на VD5 и VD6 до 22 В, и обеспечивает формирование тактового импульса для работы схемы. С R1 сформированный сигнал подается еще на 5 и 6 выводы элемента 2ИЛИ-НЕ логической цифровой микросхемы DD1.1, которая инвертирует поступающий сигнал и преобразовывает в короткие импульсы прямоугольной формы (диаграмма 3). С 4 вывода DD1 импульсы поступают на 8 вывод D триггера DD2.1, работающего в режиме RS триггера. DD2.1 тоже, как и DD1.1 выполняет функцию инвертирования и формирования сигнала (диаграмма 4).

Обратите внимание, что сигналы на диаграмме 2 и 4 практически одинаковые, и казалось, что можно сигнал с R1 подавать прямо на 5 вывод DD2.1. Но исследования показали, что в сигнале после R1 находится много приходящих из питающей сети помех и без двойного формирования схема работала не стабильно. А ставить дополнительно LC фильтры, когда есть свободные логические элементы не целесообразно.

На триггере DD2.2 собрана схема управления регулятора температуры паяльника и работает она следующим образом. На вывод 3 DD2.2 с вывода 13 DD2.1 поступают прямоугольные импульсы, которые положительным фронтом перезаписывают на выводе 1 DD2.2 уровень, который в данный момент присутствует на D входе микросхемы (вывод 5). На выводе 2 сигнал противоположного уровня. Рассмотрим работу DD2.2 подробно. Допустим на выводе 2, логическая единица. Через резисторы R4, R5 конденсатор С2 зарядится до напряжения питания. При поступлении первого же импульса с положительным перепадом на выводе 2 появится 0 и конденсатор С2 через диод VD7 быстро разрядится. Следующий положительный перепад на выводе 3 установит на выводе 2 логическую единицу и через резисторы R4, R5 конденсатор С2 начнет заряжаться.

Время заряда определяется постоянной времени R5 и С2. Чем величина R5 больше, тем дольше будет заряжаться С2. Пока С2 не зарядится до половины питающего напряжения на выводе 5 будет логический ноль и положительные перепады импульсов на входе 3 не будут изменять логический уровень на выводе 2. Как только конденсатор зарядится, процесс повторится.

Таким образом, на выходы DD2.2 будет проходить только заданное резистором R5 количество импульсов из питающей сети, и самое главное, перепады этих импульсов будут происходить, во время перехода напряжения в питающей сети через ноль. Отсюда и отсутствие помех от работы регулятора температуры.

С вывода 1 микросхемы DD2.2 импульсы подаются на инвертор DD1.2, который служить для исключения влияния тиристора VS1 на работу DD2.2. Резистор R6 ограничивает ток управления тиристором VS1. Когда на управляющий электрод VS1 подается положительный потенциал, тиристор открывается и на паяльник подается напряжение. Регулятор позволяет регулировать мощность паяльника от 50 до 99%. Хотя резистор R5 переменный, регулировка за счет работы DD2.2 нагрева паяльника осуществляется ступенчато. При R5 равному нулю, подается 50% мощности (диаграмма 5), при повороте на некоторый угол уже 66% (диаграмма 6), далее уже 75% (диаграмма 7). Таким образом, чем ближе к расчетной мощности паяльника, тем плавне работает регулировка, что позволяет легко отрегулировать температуру жала паяльника. Например, паяльник 40 Вт, можно будет настроить на мощность от 20 до 40 Вт.

Конструкция и детали регулятора температуры

Все детали тиристорного регулятора температуры размещены на печатной плате из стеклотекстолита. Так как схема не имеет гальванической развязки с электрической сетью, плата помещена в небольшой пластмассовый корпус бывшего адаптера с электрической вилкой. На ось переменного резистора R5 надета ручка из пластмассы. Вокруг ручки на корпусе регулятора, для удобства регулирования степени нагрева паяльника, нанесена шкала с условными цифрами.

Внешний вид собранной печатной платы тиристорного регулятора температуры

Шнур, идущий от паяльника, припаян непосредственно к печатной плате. Можно сделать подключение паяльника разъемным, тогда будет возможность подключать к регулятору температуры другие паяльники. Как это ни удивительно, но ток, потребляемый схемой управления регулятора температуры, не превышает 2 мА. Это меньше, чем потребляет светодиод в схеме подсветки выключателей освещения. Поэтому принятия специальных мер по обеспечению температурного режима устройства не требуется.

Самодельный тиристорный реглятор температуры паяльника

Микросхемы DD1 и DD2 любые 176 или 561 серии. Советский тиристор КУ103В можно заменить, например, современным тиристором MCR100-6 или MCR100-8, рассчитанные на ток коммутации до 0,8 А. В таком случае можно будет управлять нагревом паяльника мощностью до 150 Вт. Диоды VD1-VD4 любые, рассчитанные на обратное напряжение не менее 300 В и ток не менее 0,5 А. Отлично подойдет IN4007 (Uоб=1000 В, I=1 А). Диоды VD5 и VD7 любые импульсные. Стабилитрон VD6 любой маломощный на напряжение стабилизации около 9 В. Конденсаторы любого типа. Резисторы любые, R1 мощностью 0,5 Вт.

Регулятор мощности настраивать не требуется. При исправных деталях и без ошибок монтажа заработает сразу.

Схема разработана много лет назад, когда компьютеров и тем более лазерных принтеров не было в природе и поэтому чертеж печатной платы я делал по дедовской технологии на диаграммной бумаге с шагом сетки 2,5 мм. Затем чертеж приклеивал клеем «Момент» на плотную бумагу, а саму бумагу к фольгированному стеклотекстолиту. Далее сверлились отверстия на самодельном сверлильном станке и руками вычерчивались дорожки будущих проводников и контактные площадки для пайки деталей.

Чертеж печатной платы тиристорного реглятора температуры паяльника

Чертеж тиристорного регулятора температуры сохранился. Вот его фотография. Изначально выпрямительный диодный мост VD1-VD4 был выполнен на микросборке КЦ407, но после того, как два раза микросборку разорвало, заменил ее четырьмя диодами КД209.

Как снизить уровень помех от тиристорных регуляторов

Для уменьшения помех излучаемых тиристорным регуляторами мощности в электрическую сеть применяют ферритовые фильтры, представляющие собой ферритовое кольцо с намотанными витками провода. Такие ферритовые фильтры можно встретить во всех импульсных блоках питания компьютеров, телевизоров и в других изделиях. Эффективным, подавляющим помехи ферритовым фильтром можно дооснастить любой тиристорный регулятор. Достаточно пропустить провод подключения к электрической сети через ферритовое кольцо.

Ферритовый внешний фильтр для тиристорных регуляторов мощности

Устанавливать ферритовый фильтр нужно как можно ближе к источнику помехи, то есть к месту установки тиристора. Ферритовый фильтр можно размещать как внутри корпуса прибора, так и с внешней его стороны. Чем больше витков, тем лучше ферритовый фильтр будет подавлять помехи, но достаточно и просто продеть сетевой провод через кольцо.

Ферритовое кольцо можно взять с интерфейсных проводов компьютерной техники, мониторов, принтеров, сканеров. Если Вы обратите внимание на провод, соединяющий системный блок компьютера с монитором или принтером, то заметите на проводе цилиндрическое утолщение изоляции. В этом месте находится ферритовый фильтр высокочастотных помех.

Ферритовый фильтр интерфейсов

Достаточно ножиком разрезать пластиковую изоляцию и извлечь ферритовое кольцо. Наверняка у Вас или Ваших знакомых найдется не нужный интерфейсный кабель от струйного принтера или старого кинескопного монитора.

Источник: YDoma.info


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.