Плавный пуск ламп накаливания


Возможно, в некоторых блоках в установившемся режиме неоптимален момент включения симистора. Симистор должен открываться как можно раньше после начала каждого полупериода и при как можно меньшем напряжении сети в момент включения. Напряжение на нагрузке должно быть двуполупериодным. Его амплитуда — как можно меньше отличаться от амплитуды сетевого напряжения. Желательно посмотреть осциллограммы напряжения сети, напряжения на нагрузке, напряжения и тока управляющего электрода симистора, разумеется, с соблюдением мер электробезопасности. Применяйте разделительный трансформатор! Если его нет, нужно работать в сухом помещении без токопроводящих полов и вдали от заземлённой арматуры, отключая питание схемы (особенно фазный провод) перед каждой манипуляцией органами управления осциллографом, а затем, не касаясь его корпуса, включая снова. У меня блока нет, а осциллограф сломался. Будет интересно ознакомиться с данными, если кто-то произведёт измерения и выложит результаты. Если момент включения симистора оптимизировать, недостаточно малое падение напряжения на блоке может быть связано с его двухточечным подключением: относительно большое остаточное напряжение необходимо для питания схемы управления! Возможно, это мешает устанавливать режим раннего открывания симистора.


ли доработать блок так, чтобы схема управления питалась не через нагрузку, надеюсь, остаточное напряжение удастся снизить, хотя это и потребует трёхточечного подключения: кроме фазы и нагрузки, к блоку придётся подключать ещё и нулевой провод. Промышленные трёхточечные блоки выпускаются? Дальнейшего снижения падения напряжения, возможно, удастся добиться применением схем с коммутацией нагрузки элементами с меньшим напряжением в открытом состоянии, например с мощными переключательными полевыми транзисторами вместо симистора. Думаю, что можно также создать и устройство с триггерным эффектом, управляемое кнопками без фиксации и позволяющее исключить традиционный механический выключатель в силовой цепи. Если новый блок спроектировать грамотно, полупроводники способны на многое. Вот только удастся ли при всех этих радиолюбительских трюках сделать устройство малогабаритным — вопрос второй!

Источник: zametkielectrika.ru

Подключение с использованием блока защиты

Обычно для решения этой проблемы используется блок защиты, который и выполняет функцию УПВЛ. При использовании с лампами накаливания данного устройства напряжение при включении возрастает не так резко, а постепенно повышается. Таким образом, нить накаливания не испытывает излишних перегрузок, и срок эксплуатации лампочки возрастает.


Рассмотрим подробнее схему работы этого устройства на примере блока Uniel Upb-200W-BL, последовательно подключенного к лампе накаливания в 75 Вт. В этой схеме ток сначала проходит через блок и уже потом идет на лампу. В результате этого происходит дополнительное падение напряжения, и на лампу поступает не стандартные 220, а 171 В. Причем за счет прохождения тока через блок защиты рост напряжения до 171 В происходит плавно за 2-3 секунды.

Снижение поступающего напряжения также способствует увеличению сроку эксплуатации лампочки. Но, с другой стороны, пониженное напряжение значительно снижает световой поток, примерно, на 70 процентов, а это существенный показатель. Поэтому при использовании блока защиты необходимо учитывать потери по освещенности и использовать более мощные, по сравнению с обычными, лампы.

Рассматриваемый в нашей схеме блок может выдерживать мощность до 200 Вт, значит, к нему можно подключать лампы примерно такой же мощности. Но лучше задать небольшой запас в 20-25 процентов и использовать в схеме лампы с суммарной мощностью не более 160 Вт. За счет запаса мощности лампы и сам блок прослужат дольше. Естественно, что и на сам блок не стоит подавать напряжение больше, чем 200 ВТ.

Схема плавного включения ламп накаливания довольно простая. Блок устанавливается последовательно от выключателя к лампе, то есть в разрыв фазного провода.

Сам блок зашиты можно разместить в двух местах:

  1. рядом с осветительным прибором;
  2. у выключателя – в этом случае блок располагается в распределительной или установочной коробке.

Выбор места зависит от размеров блока защиты, для слишком большого прибора придется выделять отдельное место. Недостаток размещения в подрозетнике состоит в том, что блок зашиты не будет иметь достаточного доступа воздуха для охлаждения.

Внимание! Блок защиты нельзя устанавливать в помещениях с повышенной влажностью.

Как изготовить блок защиты самостоятельно

Для создания блока можно применить следующую схему.

Устройство работает по следующему принципу:

  1. Сначала полевой транзистор закрыт. На него идет стабилизационное напряжение. Лампа не горит;
  2. При поступлении напряжение от резистора R1 и диода VD 1 конденсатор С1 заряжается до 9,1 В. Это максимальный уровень, который ограничивается параметрами стабилитрона;
  3. Когда заданное напряжение достигнуто, транзистор постепенно открывается, а сила тока увеличивается. На стоке напряжение понизится. Нить накаливания лампы начнет плавно разжигаться;
  4. Второй резистор контролирует степень разрядки конденсатора. За счет этого резистора конденсатор может продолжить разряжаться и после выключения питания.

Использование данного блока защиты позволяет не только осуществлять плавный пуск ламп накаливания, но и предохранить их от неприятного мерцания во время работы светильника.

Использование диммирования

Плавное включение ламп накаливания также может быть выполнено диммерами или светорегуляторами. Название диммер произошло от английского «dim», что означает затемнять. Здесь уровень подачи напряжения регулируется автоматическим или механическим (за счет вращения ручки) способом. У простых диммеров схема управления построена на реостате – переменном резисторе. Сейчас для этих целей используются полупроводниковые симмисторные или транзисторные ключи. В современной электротехнике для плавного включения ламп накаливания 220 Вт преимущественно используются приборы с таймером, сенсором или на дистанционном управлении. Обычно светорегуляторы устанавливаются вместо штатного выключателя.

В роторных диммерах накал галогеновых ламп регулируется при повороте ручки потенциометра. В электронных – все параметры задаются автоматически.

Собрать простой регулятор можно своими руками.

Схема состоит из:

  • BT134 – симистора на 700 В, который можно заменить на КУ208Г, MAC212-8, MAC8S, BT138 или BT136;
  • DB3 – динистора, также можно использовать КН102, HT40 HT34, HT32, DC34, DB4;
  • неполярного конденсатора с емкостью от 0,1 до 0,22 мкФ (250 В);
  • резистора (10 кОм) с максимальной мощностью от 0,25 до 2 Вт;
  • компактного переменного резистора (уровень сопротивления примерно 500 кОм);
  • проводов для соединения с основной схемой.

Собранное устройство последовательно устанавливают в нулевую фазу провода, идущего к светильнику. Симистор пропускает ток только при определенной разности потенциалов. Накопление заряда идет на конденсаторе, который подключен к симистору. При этом скорость заряда определяется уровнем сопротивления переменного резистора. Сам же уровень этого сопротивления задается пользователем. Чем меньше сопротивление переменного резистора, тем ярче горит лампа.

Достоинством данного самодельного устройства является то, что при работе не происходит падения уровня напряжения, и освещенность не страдает. С другой стороны, плавный пуск галогенной лампы достигается за счет механического поворота симистора, отрегулировать скорость которого сложно. Точные параметры можно задать только на современных автоматических приборах, собрать которые своими руками сложнее.

При выборе диммерного устройства для плавного включения лампы накаливания необходимо учесть, что некоторые виды оборудования начинают работу с минимального значения, когда нить накаливания слегка тлеет. Другие сразу дают существенный скачок, который также приводит к большому перепаду напряжения на лампе.

Использование диммера может привести к повышению уровня магнитострикции и появлению высокочастотного свиста или шума, идущего от лампы накаливания. Это явление характерно для мощных ламп накаливания. Если светильники работают без диммера, то дополнительного звука практически неслышно.

Микросхемы для фазового регулирования


В радиотехнике разработаны специальные микросхемы, основной задачей которых является фазовое регулирование различных параметров. Одна из таких радиокомпонент – это микросхема КР1182ПМ1.

Она служит для плавного запуска ламп накаливания. Причем эта микросхема обеспечивает не только включение, но и плавное выключение прибора. КР1182ПМ1 рассчитана на ток до 150 Вт и имеет несколько выводов:

  • 2 силовых – для последовательного подключения в цепь с нагрузкой;
  • 2 вспомогательных;
  • 2 для регулировочного резистора и других радиокомпонент для управления.

КР1182ПМ1 включается в цепь следующим образом.

При размыкании выключателя S конденсатор С3 начинает плавно заряжаться до значения, которое определяется показателями резистора R2 и уровнем входного тока управляемого преобразователя напряжения в ток (УПНТ) в микросхеме. Выходной ток на УПНТ также плавно растет, а задержка включения тиристоров падает. Таким образом, лампочки включаются постепенно. При замыкании ключа C3 разрядится через R2, и этот процесс также будет происходить плавно.

Плавное включение позволит избежать выхода из строя и маломощных ламп накаливания, ведь проблемы с перегоранием не связаны с уровнем мощности. Даже если в устройстве подключения лампочки на 12В установлены через понижающий трансформатор, без плавного пуска лампа быстрее выйдет из строя.


Источник: amperof.ru

Решил себе сделать плавное включение ламп ближнего света и ДХО. Источником информации для меня послужила запись одного человека с драйва, ссылку дать не могу, так как сейчас она не доступна, возможно удалили страницу. Он предложил использование реле и терморезистора.

Что нам понадобится:
— реле song chuan 102-1СН-С или любое другое, выпаял из поврежденной сигналки;
— терморезистор 20S050M на 5 ОМ и 7 А.

А вот и сама схема

Принцип работы: у реле используется нормально разомкнутая группа, питание подается на один из разомкнутых контактов и на терморезистор, резистор греется и пропускная способность увеличивается, на выходе напряжение начинает возрастать от 0В, лампочка потихоньку разгорается, также напряжение на реле поднимается до того момента пока оно не сработает и после ток уже идет напрямую на лампу, а реле само себя поддерживает.

Контакты реле: 1 и 2 катушка, 3 и 4 нормально замкнутая группа, 3 и 5 нормально разомкнутая группа.

Собранное реле для ДХО, оно подключается в разрыв провода. Зеленый провод вход питания от переключателя, белый — выход на лампы, черный — масса. Обе ходовые лампы потребляют не больше 4 А, поэтому один терморезистор справится.


Контакты закрыл термоусадкой, подложил паралонку под низ и замотал изолентой.

Подключение произвел прям у разъема МУСа в разрыв желто-синего провода, а реле повесил на балку.

Для ближнего света пришлось разделиться, для каждого борта ставил отдельное реле, так как только одна лампа потребляет почти 5 А.

Принцип подключения тот же самый.

Релюшки повесил под блоком предохранителей, а подключил там же на сером разъеме, на жгуте идущем под капот, к серому и серо-черному проводам.

А теперь видео-презентация.

ДХО

И ближний свет

Тут может заметили, что правая (по видео) разгорается чуть быстрее, резисторы не совсем точные получились.

Итог работы: лампы включаются плавно и срок их службы увеличен, пока посмотрю как будут работать с родными лампами, а в дальнейшим хочу поставить лампы с увеличенной яркостью, у них ресурс меньше, а так может дольше проходят.

По поводу терморезисторов: они работают только на момент разгара, до включения реле, далее ток идет по пути меньшего сопротивления через контакты реле. Во время запуска они греются и при первом включении если держать их пальцами то температуру можно выдержать, а при двух и более включений подряд температура увеличивается, да и плавность включения уже меньше, так как резисторы еще не остыли.

Недостаток: при езде ночью и при переключении с дальнего на ближний, будет провал в освещении, пока ближний не разогреется, а это очень опасно!


Решение проблемы.
Сделал задержу отключения дальнего света, то есть повесил конденсатор на реле дальнего света. Теперь при переключении с дальнего на ближний свет, дальний еще пару секунд горит, включается ближний и тут же отключается дальний.

Взял 3 конденсатора: 2 на 2200мкФ и 1 на 1000 мкФ, на 16 В.
Соединил конденсаторы параллельно, подключил на колодке переключателя поворотников к коричнево-белому проводу, он идет на включение реле дальнего света, массу кондеров посадил на кузов под болт.

Результат:
— если включать только при включенном зажигании: напряжение бортсети 12,6 В поэтому кондеры тоже зарядятся до этого напряжения и при переключении с дальнего на ближний будет пауза на долю секунды;
— если включать на заведенном двигателе: напряжение бортсети уже 14,5 В поэтому кондеры тоже зарядятся до этого напряжения и при переключении с дальнего на ближний паузы не будет.

Наглядный пример:
Пример 1. Машинка путем не прогрета, свет еще не включался, сразу только дальний включил и прям одновременно получается, гаснет дальний и сразу включается ближний.

Пример 2. Салон прогретый, ехал до дома на ближнем, терморезисторы не под питанием, нагреты до салонной температуры, потом стоял еще на дальнем свете, и при переключении с дальнего на ближней паузы нет, а наоборот включается ближний и затем выключается дальний.


Такую разницу объяснить могу лишь тем, что в прогретом салоне терморезисторы быстрее нагреваются при включении.
А по идеи, вообще можно еще поднять емкость конденсаторов, но у меня уже закончились такие крупные. Проверял в поездке в деревню, пробовал несколько раз, все работает по примеру 2. Так меня все устраивает, неудобств замечено не было.

Источник: www.drive2.ru

Принцип работы

Блок питания

Для меньшего износа нити накаливания необходимо сгладить скачок, т. е. обеспечить плавное включение и выключение ламп накаливания. Значит, нужно оптимальное соотношение температуры спирали и напряжения, что приведет к нормализации режима и, как следствие, сохранению работоспособности светового прибора на более долгий срок. Помочь может схема плавного включения ламп накаливания, если конкретно – нужно использовать специальный блок питания. В течение короткого времени нить накала разогреется до необходимого предела как температуры, так и напряжения, установленного человеком.

Блок питания для плавного запуска
Блок питания для плавного запуска

Если выставить уровень питания на 180 В, то, естественно, сила светового потока уменьшится на две трети, но при установке более мощных потребителей возможно добиться нужного уровня освещенности, обеспечивая плавный пуск ламп накаливания, при этом будет и экономия энергии, и продление срока эксплуатации самого светового прибора.

При приобретении такого блока плавного включения лампочек с нитью накаливания нужно уточнить, устойчиво ли устройство к высоким скачкам напряжения в сети. В идеале предельный запас по этому параметру должен превышать 25–30 %. И чем выше уровень этого показателя, тем больших размеров будет устройство. Необходимо учитывать этот факт, ведь блок плавного включения нужно где-то расположить.

Устройство плавного включения

Алгоритм работы устройства плавного включения лампы накаливания 220 В тот же, что и у блока питания, но УПВЛ имеет значительно меньшие размеры, благодаря чему его можно поместить и под колпак потолочного светильника, и непосредственно за выключатель (в тот же подрозетник), а также в соединительную коробку.

Подключать это устройство к сети 220 В нужно последовательно, соединив на фазный провод. А при условии, что напряжение на лампу подается в 12 В или 24 В, УПВЛ требуется его последовательное включение в схему до понижающего трансформатора.

Схема и внешний вид устройства плавного запуска лампы
Схема и внешний вид устройства плавного запуска лампы

Диммирование

Широко распространено использование в быту светорегуляторов или диммеров. Эти устройства также монтируются в схемы включения ламп накаливания и управляют уровнем подачи напряжения на светильник либо механическим (посредством вращения ручки), либо автоматическим способом. В цепь они чаще всего введены на место штатного выключателя (хотя есть более сложные модели, устанавливающиеся и на ввод напряжения в квартиру).

Самые простейшие диммеры – с поворотным механизмом регулировки. В таком устройстве возможна регулировка подачи от нуля до максимального напряжения в сети. Существуют такие приборы с дистанционным, сенсорным, звуковым и автоматическим (при помощи таймера) управлением.

Собственноручное изготовление УПВЛ

Конечно, все подобные устройства для плавного включения ламп накаливания легко приобрести в любом магазине электротехники, но для кого-то будет интереснее и познавательнее собрать его своими руками. Это вполне возможно и не потребует огромных знаний физики и электроники. Наиболее простая схема включения УПВЛ – на основе симметричных триодных тиристоров (симисторов). Также несложны в изготовлении устройства на основе специализированной микросхемы.

Схема на основе симистора

Схема УПВЛ с применением симистора
Схема УПВЛ с применением симистора

Такая схема прибора для плавного включения ламп накаливания содержит мало элементов благодаря тому, что силовым ключом в ней выступает симистор (к примеру, КУ208Г). В ней хотя и желательно, но не принципиально присутствие дросселя (в отличие от более сложной схемы на основе простого тиристора). Резистором R1 (на схеме выше) обеспечивается ограничение тока на симистор. Время накала задается цепочкой из резистора R2 и конденсатора в 500 мкФ, питание на которые идет от диода.

Когда напряжение в конденсаторе достигает уровня открытия симистора, ток проходит через него, производя запуск потребителя (источника света). Таким образом, создаются условия для постепенного розжига нити накаливания, т. е. плавное включение света. В момент отключения питания происходит медленный разряд конденсатора, в результате чего плавно выключается лампа.

На основе микросхемы

Разработанная для изготовления различных регуляторов микросхема КР1182ПМ1 как нельзя лучше подходит для сборки своими руками устройства плавного включения и выключения ламп накаливания. В случае использования такой схемы практически никаких усилий прилагать не придется, т. к. КР1182ПМ1 будет сама регулировать плавную подачу напряжения на осветительный прибор до 150 Вт. Если же мощность потребителей выше, в схему включается симистор. Неплохо подойдет для этой цели ВТА 16-600.

УПВЛ с использованием микросхемы КР1182ПМ1
УПВЛ с использованием микросхемы КР1182ПМ1

Имеет смысл использование подобных устройств не только с лампочками накаливания, но и с галогенными лампами на 220 В. Допускается также подключение к электроинструменту для более плавного раскручивания ротора. А вот с лампами дневного света, как и с энергосберегающими (КЛЛ), использование УПВЛ не допускается. В их схеме подключения подобное устройство присутствует. Также не нужно устройство плавного включения и при монтаже светодиодов – потребность в нем у LED-ламп отсутствует по причине того, что нити накала в них нет, независимо от того, 24-вольтовый светильник, на 220 или 12 вольт.

Устанавливать или нет?

Кто-то скажет, что раньше жили без подобных устройств и даже не думали о подобном, и все было в порядке. Но ведь раньше и об экономии как-то не задумывались.

Конечно, возникает много вопросов по поводу УПВЛ. Стоит или нет тратить время и деньги на установку или изготовление своими руками подобного устройства, будет ли какая-либо экономия, а если да, то через какое время прибор оправдает свою покупку? Здесь каждый решает сам. Но то, что значительно экономится электроэнергия, и к тому же срок службы ламп при использовании УПВЛ увеличивается многократно – доказанный временем факт. А потому, если есть возможность установить подобное устройство, то нужно это сделать.

Источник: LampaGid.ru

Возможно, в некоторых блоках в установившемся режиме неоптимален момент включения симистора. Симистор должен открываться как можно раньше после начала каждого полупериода и при как можно меньшем напряжении сети в момент включения. Напряжение на нагрузке должно быть двуполупериодным. Его амплитуда — как можно меньше отличаться от амплитуды сетевого напряжения. Желательно посмотреть осциллограммы напряжения сети, напряжения на нагрузке, напряжения и тока управляющего электрода симистора, разумеется, с соблюдением мер электробезопасности. Применяйте разделительный трансформатор! Если его нет, нужно работать в сухом помещении без токопроводящих полов и вдали от заземлённой арматуры, отключая питание схемы (особенно фазный провод) перед каждой манипуляцией органами управления осциллографом, а затем, не касаясь его корпуса, включая снова. У меня блока нет, а осциллограф сломался. Будет интересно ознакомиться с данными, если кто-то произведёт измерения и выложит результаты. Если момент включения симистора оптимизировать, недостаточно малое падение напряжения на блоке может быть связано с его двухточечным подключением: относительно большое остаточное напряжение необходимо для питания схемы управления! Возможно, это мешает устанавливать режим раннего открывания симистора. Если доработать блок так, чтобы схема управления питалась не через нагрузку, надеюсь, остаточное напряжение удастся снизить, хотя это и потребует трёхточечного подключения: кроме фазы и нагрузки, к блоку придётся подключать ещё и нулевой провод. Промышленные трёхточечные блоки выпускаются? Дальнейшего снижения падения напряжения, возможно, удастся добиться применением схем с коммутацией нагрузки элементами с меньшим напряжением в открытом состоянии, например с мощными переключательными полевыми транзисторами вместо симистора. Думаю, что можно также создать и устройство с триггерным эффектом, управляемое кнопками без фиксации и позволяющее исключить традиционный механический выключатель в силовой цепи. Если новый блок спроектировать грамотно, полупроводники способны на многое. Вот только удастся ли при всех этих радиолюбительских трюках сделать устройство малогабаритным — вопрос второй!

Источник: zametkielectrika.ru


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.