Проверка якоря на межвитковое замыкание


Замыкание обмотки якоря на корпус

Такого рода замыкание происходит из-за механических повреждений изоляции. Причинами механических повреждений являются: наличие в пазах выступающих листов активной стали и заусенцев, тугое заполнение паза, неплотная укладка обмотки в пазы, отчего провода под действием центробежных сил при вращении перемещаются в пазу, ослабление бандажей и другое.

Кроме механических повреждений изоляции, причинами замыкания на корпус могут явиться увлажнение изоляции, попадание в пазы и лобовые части припоя, сильный и длительный перегрев машины, распайка соединений и другое.

Замыкание обмотки якоря на корпус можно обнаружить контрольной лампой (рисунок 1, а). При проверке лампу присоединяют одним концом к сети, а другим к коллектору. Второй (свободный) конец сети присоединяют к валу якоря. Загорание лампочки свидетельствует о замыкании обмотки на корпус. Для такой проверки можно пользоваться также мегомметром.


Проверка замыкания обмоток на корпус

Рисунок 1. Проверка замыкания обмоток на корпус.
а – контрольной лампой; б – мегомметром: 1 – мегомметр; 2 – коллектор; 3 – вал; 4 – подставка

Место замыкания обмотки на корпус можно определить по схеме, приведенной на рисунке 2.

В схеме, приведенной на рисунке 2, а, питание от источника постоянного тока подключают к щеткам через предохранитель П. Ток регулируют реостатом R. Щуп одного из проводов от милливольтметра mV присоединяют к сердечнику или валу якоря, а другим касаются любой пластины коллектора. Источником тока может служить аккумуляторная батарея или сеть постоянного тока напряжением 220 или 110 В. При отыскании повреждения достаточен ток 6 – 8 А. Милливольтметр берут со шкалой до 50 мВ.

При петлевой обмотке присоединение к коллектору производят в двух диаметрально противоположных точках. При волновой обмотке соединение к пластинам производят на расстоянии половины шага по коллектору.

При замыкании на корпус в петлевой обмотке стрелка прибора покажет отклонение, равное сумме падений напряжений в секциях, оказавшихся между секцией, замкнутой на корпус, и той, к которой присоединен щуп (рисунок 2, б, положение I – сплошная стрелка).
п, присоединенный к коллектору, передвигают в одну и другую стороны. При его приближении к замкнутой на корпус секции показания прибора будут уменьшаться (положение II – пунктирная стрелка), так как будет уменьшаться число секций, на которых измеряется падение напряжения. Когда щуп будет соединен с секцией, которая замкнута на корпус, стрелка милливольтметра станет на нуль (положение III). Если двигать щуп дальше, то стрелка прибора отклонится в обратную сторону (положение IV).

При проверке волновой обмотки наименьшие показания будут давать пластины коллектора, либо непосредственно замкнутые на корпус, либо замкнутые на корпус через секции обмотки.

Место замыкания определяют также «прослушиванием» обмотки (рисунок 2, в). Для этого аккумуляторную батарею и зуммер 3 присоединяют к валу якоря и любой коллекторной пластине. К валу присоединяют также один вывод телефона 1; другой вывод его перемещают по коллектору 2. Чем ближе перемещаемый проводник к замкнутой пластине или секции, тем слабее шум в телефоне. При касании проводником замкнутой на корпус секции шум исчезает.

Если указанные выше способы не дают положительных результатов, то приходится путем распайки делить обмотку на части и проверять мегомметром каждую часть в отдельности. При обнаружении замыкания в одной из частей обмотки ее продолжают делить на части до тех пор, пока не будет обнаружена секция, замкнутая на корпус.

Замыкания на корпус устраняют следующим образом:


  1. если замыкание произошло в местах выхода секций из пазов, то вгоняют под секцию небольшие клинья из фибры, бука или другого изоляционного материала;
  2. если замыкание произошло в пазовой части секции, то секцию переизолируют или заменяют новой;
  3. при отсыревании обмотки ее прослушивают;
  4. если обнаружено замыкание пластин на корпус, то следует произвести ремонт коллектора с разборкой.

Межвитковые замыкания

Такой вид замыканий представляет собой соединение витков внутри обмотки вследствие повреждения изоляции обмоточных проводов. Чаще всего межвитковые замыкания происходят при повреждении изоляции проводников во время рихтовки и осадки катушек, при укладке обмотки, из-за попадания припоя или стружки между витками, при пробое обмотки на корпус, вследствие перекрещивания проводов в пазовой части при всыпной обмотке и тому подобное.

Межвитковые замыкания могут быть в одной или нескольких секциях якоря или между секциями вследствие замыкания смежных пластин коллектора. При замыкании между концами секции или между  пластинами коллектора, а также при соединении между собой отдельных витков секции в обмотке якоря образуются замкнутые контуры.

В петлевой обмотке замыкание между двумя смежными пластинами вызывает замыкание только секции, которая присоединена к этим пластинам, и число действующих в обмотке витков уменьшается на число витков, заключающихся в одной секции.


В волновой обмотке замыкание между двумя смежными пластинами вызывает замыкание ряда секций, которые заключены в одном полном обходе вокруг якоря. Число их равно числу пар полюсов машины.

В короткозамкнутых контурах при вращении их в магнитном поле индуктируется электродвижущая сила (ЭДС), которая вызывает большие токи короткого замыкания вследствие малого сопротивления этих контуров. Короткозамкнутые витки, появившиеся во время работы машины, сильно разогреваются проходящим через обмотку током и обычно сгорают.

Как определить межвитковое замыкание электродвигателя? У якорей с волновой обмоткой, а также в обмотках, имеющих уравнительные соединения при значительном числе замкнутых секций, невозможно по нагреву определить короткозамкнутую ветвь, так как нагревается весь якорь. Иногда место витковых замыканий может быть обнаружено при внешнем осмотре по обуглившейся и сгоревшей изоляции секции.

Наиболее простые и часто встречающиеся случаи (например, замыкания витков одной секции, между соседними коллекторными пластинами или же между соседними секциями, находящимися в одном слое обмотки) обнаруживаются по падению напряжения, прослушиванием и другими способами.

Способ определения повреждений по падению напряжения

Такой способ (рисунок 3) заключается в следующем. К паре коллекторных пластин 1 подводится постоянный ток с помощью щупов 3.
пами 2 измеряют падение напряжения на этой же паре пластин. При замыкании в секции, которая присоединена к проверяемой паре пластин, получается меньшее падение напряжения при одном и том же токе, чем на другой паре пластин, между которыми нет замыкания. Чем больше короткозамкнутых витков, тем меньше падение напряжения. Наименьшее падение напряжения (или равное нулю) будет при замыкании между самими коллекторными пластинами.

Таким образом проверяется весь якорь и производится сравнение результатов измерений. Проверку якоря следует производить при поднятых щетках. Параметры схемы такие же, как и на рисунке 2, а.

Чтобы предупредить повреждение милливольтметра (рисунок 3), необходимо сначала прикладывать к коллектору щупы 3, а затем щупы 2; отнимать щупы нужно в обратном порядке.

Хорошие результаты этот способ дает при определении замыканий между витками в секции с небольшим количеством витков (стержневые обмотки). В многовитковых секциях при замыкании одного-двух витков разница в показаниях милливольтметра на коллекторных пластинах исправной секции и поврежденной может оказаться незначительной.

На рисунке 4 показаны схемы для определения межвитковых замыканий с помощью телефона и стальной пластины. Испытательная установка состоит из электромагнита 1, питаемого переменным током повышенной частоты. Якорь 3 устанавливают над электромагнитом. При межвитковом замыкании в какой-либо секции в ней будет проходить большой ток, что обнаружится по нагреву. С помощью телефона 2 и электромагнита 4 можно быстро определить паз с поврежденной секцией. При исправных секциях обмотки в телефоне 2 слышен слабый, одинаковой силы звук. Если же одна из секций имеет межвитковое замыкание, то звук в телефоне заметно усиливается.


Проверка якоря на межвитковое замыкание

Рисунок 4. Проверка якоря на межвитковое замыкание.
а – с помощью телефона; б – с помощью стальной пластины

Для полной проверки обмотки нужно переставлять электромагнит 4 по зубцам якоря, пока последний не будет обойден кругом. Если к зубцам сердечника, охватывающим неисправную секцию, поднести тонкую стальную пластину 5 (рисунок 4, б), то она начнет дребезжать. Этим способом обнаруживается замыкание смежных пластин коллектора, которое вызывает те же явления, что и межвитковое замыкание.

Для определения межвитковых замыканий может быть использована схема, показанная на рисунке 2, в. Для этого второй проводник присоединяют не к валу, как показано на рисунке, а к коллекторной пластине. Провода от телефона 1 присоединяют к двум смежным пластинам.


Секцию, имеющую витковое замыкание, обычно заменяют новой. Переизолировкой одного лишь места замыкания можно ограничится только в случае неполного контакта в месте замыкания, да и то при отсутствии иных повреждений изоляции.

В случае необходимости (в качестве временной меры) при небольшом числе коллекторных пластин производят выключение из работы поврежденных секций. Выключение одной секции не отражается заметным образом на коммутации машины.

Обрывы в обмотке якоря

Обрывы в обмотке возникают вследствие выплавления припоя из-за перегрева обмоток при перегрузках, короткого замыкания, надлома от частых изгибаний лобовых частей обмотки и тому подобного. Обрывы чаще всего происходят в обмотках из тонкого провода из-за его малой механической прочности. Обрыв обмотки или плохой контакт сильно ухудшает коммутацию машины и может вызвать значительное искрение на коллекторе и его подгорание. Если якорь работает длительное время с обрывом, то образующаяся в месте обрыва дуга может постепенно прожечь изоляцию и привести к замыканию обмотки на корпус.

В петлевой обмотке обрыв сопровождается искрением на коллекторе и подгоранием двух смежных пластин, к которым присоединена поврежденная секция. При волновой обмотке подгорает несколько пар соседних пластин (по числу полюсов), к которым присоединены секции одной последовательной цепи этой обмотки. При этом подгорают обращенные друг к другу края соседних пластин.


Как при плохом контакте, так и при обрыве при наличии уравнительных соединений могут подгореть, кроме пластин, относящиеся к неисправным секциям, и коллекторные пластины, отстоящие от них на двойное полюсное деление и связанные с ними уравнительными соединениями. Место обрыва можно определить по падению напряжения.

При обрыве какой-либо секции (рисунок 5, а) не будет тока во всей половине обмотки, в которой находится неисправная секция, поэтому прибор везде покажет нуль (положения II и III), кроме случая, когда провода прибора будут присоединены к концам оборванной секции. При этом цепь будет замкнута через прибор и стрелка его отклонится так же, как если бы провода прибора были присоединены непосредственно к источнику тока (положение I).

Отыскание одного и двух обрывов в петлевой обмотке

Рисунок 5. Отыскание одного (а) и двух (б) обрывов в петлевой обмотке

При двух обрывах (рисунок 5, б), если замыкать попарно пластины коллектора, прибор ничего не покажет на всем участке между пластинами, к которым подведено напряжение. Для нахождения мест обрывов поступают следующим образом: один из щупов от проводов, соединенных с прибором, устанавливают на коллекторную пластину, к которой подводится питание, а другой перемещают по коллектору, начиная от другого подводящего питание щупа. При этом показания прибора будут максимальными (положение IV). Когда передвигаемый по коллектору щуп «пройдет» место обрыва, прибор покажет нуль (положение V). Найдя один обрыв, таким же образом отыскивают и другой.


При обрывах в волновой обмотке наибольшее отклонение будет иметь место на нескольких парах пластин, находящихся попарно на расстоянии шага по коллектору друг от друга. Обрывы в якоре, имеющем параллельные ветви, могут быть также определены измерением их сопротивления. При обрыве одной из секций сопротивление обмотки резко возрастает.

После укладки обмотки якоря в пазы сердечника она должна быть проверена на правильность соединения с пластинами коллектора. Эту проверку производят после того, как концы секций обмотки зачищены до металлического блеска и заложены в прорези коллекторных пластин. На рисунке 6 показана схема установки, необходимой для этой цели. На деревянных стойках, привернутых к деревянному основанию 3, устанавливается якорь 2. Под якорем помещен электромагнит 5, сердечник которого изготовлен из П-образных листов электротехнической стали. Обмотка электромагнита 8 состоит из двух катушек, которые соединены так, что при прохождении по ним тока возникают два разноименных магнитных полюса С и Ю. Катушки получают питание от выпрямителя 4 через реостат 7.
ключателем служит ножная педаль 1. Вилкой 9 милливольтметр 6 соединяется с двумя смежными пластинами. В момент размыкания контактов педалью 1 в обмотке якоря индуктируются импульсы. При правильном соединении обмотки и положении вилки 9 на любых смежных пластинах коллектора стрелка милливольтметра 6 должна отклоняться в одну и ту же сторону и приблизительно до одного и того же деления шкалы.

Неисправности в обмотках полюсов и устранение их

Катушки полюсов меньше подвергаются повреждениям, так как они неподвижно закреплены на полюсах. Чаще всего катушки повреждаются на углах внутри катушки, у места выхода внутреннего выводного конца вследствие неправильной установки его вначале намотки и тому подобное. К причинам повреждения можно отнести нарушение изоляции из-за того, что она плохо натянута, неравномерную укладку изоляции, выступы и заусенцы металлического каркаса и другое. Наиболее часто встречаются следующие неисправности обмоток полюсов: обрыв или плохой контакт, межвитковые замыкания и замыкание обмоток на корпус.

Межвитковое замыкание в катушках полюсов

Поврежденная катушка со значительным числом замкнутых витков имеет уменьшенное сопротивление. Ее можно легко обнаружить, если измерить сопротивления всех катушек измерительным мостом, тестером, методом амперметра и вольтметра (постоянным током) и другими. При измерении сопротивления методом амперметра и вольтметра испытуемая катушка включается в сеть через сопротивление, которым может регулироваться ток в катушке. По показаниям амперметра и вольтметра находят по закону Ома сопротивление катушки. Сопротивление всех катушек, не имеющих витковых замыканий, одинаково. В катушках с замкнутыми витками будет меньше сопротивление, чем в катушках, не имеющих замкнутых витков.

Замыкания в обмотках полюсов, если они находятся не на выводных концах, устраняют частичной или полной перемоткой. С катушки отматывают витки и одновременно производят осмотр. Если витковые замыкания вызваны увлажнением изоляции, то катушку следует просушить.

Обрывы в обмотках полюсов

Обрывы в обмотках полюсов бывают только в катушках, которые изготовлены из проволоки небольшого сечения. Место обрыва можно определить вольтметром, которым измеряют напряжение на всех катушках (рисунок 7, а). При обрыве в катушке вольтметр, подключенный к зажимам поврежденной катушки, покажет полное напряжение сети. На исправных катушках вольтметр не даст отклонений. Обрыв можно также обнаружить контрольной лампой или мегомметром. Обрыв, а также плохой контакт в доступных местах устраняют пайкой.

Определение места обрыва и замыкания на корпус в обмотках полюсов

Рисунок 7. Определение места обрыва (а) и замыкания на корпус (б) в обмотках полюсов

Замыкание обмотки полюсов на корпус

Замыкание обмотки полюсов на корпус можно определить, если через всю обмотку пропустить постоянный ток. Один конец вольтметра (рисунок 7, б) присоединяют к корпусу машины, а другой (свободный) – к выводу катушки. Вольтметр покажет наименьшее напряжение на выводах катушки, замкнутой на корпус.

Проверка последовательной обмотки или обмотки добавочных полюсов производится при пониженном напряжении, величина которого регулируется включенным последовательно реостатом. Вместо вольтметра для измерения напряжения применяют милливольтметр.

Замкнутую на корпус катушку можно обнаружить контрольной лампой или мегомметром. Для этого катушки разъединяют и проверяют отдельно. Для устранения замыкания на корпус снимают катушку с сердечника полюса и осматривают места соприкосновения ее как с корпусом, так и со станиной. Замыкания на корпус устраняют переизолировкой катушек, установкой изоляционных прокладок, сушкой при увлажнении и другими способами.

Правильность соединения катушек полюсов проверяется компасом или намагниченной стрелкой (рисунок 8). Для этого по обмоткам полюсов пропускают постоянный ток и к каждой катушке подносят компас или стрелку. Если чередование полярности полюсов правильное, то при перемещении, например, компаса внутри машины (при вынутом якоре) от полюса к полюсу стрелка компаса будет поочередно притягиваться к полюсам то одним, то другим концом.

Источник: Логачев И. С., Родин Г. Г., «Ремонт обмоток машин постоянного тока» — Москва: Энергия, 1968 — 128 с.

Источник: www.electromechanics.ru

Как найти межвитковое замыкание

Замыкание витков легко определить, для этого есть несколько методов. Во время работы электродвигателя обратите внимание на неравномерный нагрев статора. Если одна его часть нагрелась больше, чем корпус двигателя, то необходимо остановить работу и провести точную диагностику мотора.

Существуют приборы для диагностики замыкания витков, можно проверить токовыми клещами. Нужно измерить нагрузку каждой фазы по очереди. При разнице нагрузок на фазах надо задуматься о наличии межвиткового замыкания. Можно перепутать витковое замыкание с перекосом фаз сети питания. Чтобы избежать неправильной диагностики, надо измерить приходящее напряжение питания.

Обмотки проверяют мультиметром путем прозвонки. Каждую обмотку проверяем прибором отдельно, сравниваем результаты. Если замкнуты оказались всего 2-3 витка, то разница будет незаметна, замыкание не выявится. С помощью мегомметра можно прозвонить электромотор, выявив наличие замыкания на корпус. Один контакт прибора соединяем с корпусом мотора, второй к выводам каждой обмотки.

Если нет уверенности в исправности двигателя, то необходимо произвести разборку мотора. При разборе нужно осмотреть обмотки ротора, статора, наверняка будет видно место замыкания.

Наиболее точным методом проверки замыкания между витками обмоток является проверка понижающим трансформатором на трех фазах с шариком подшипника. Подключаем на статор электромотора в разобранном виде три фазы от трансформатора с пониженным напряжением. Кидаем шарик подшипника внутрь статора. Шарик бегает по кругу – это нормально, а если он примагнитился к одному месту, то в этом месте замыкание.

Можно вместо шарика применить пластинку от сердечника трансформатора. Ее также проводим внутри статора. В месте замыкания витков, она будет дребезжать, а где замыкания нет, она просто притянется к железу. При таких проверках нельзя забывать про заземление корпуса двигателя, трансформатор должен быть низковольтным. Опыты с пластинкой и шариком при 380 вольт запрещаются, это опасно для жизни.

Самодельный прибор для определения виткового замыкания

Сделаем дроссель своими руками для проверки межвиткового замыкания в обмотке двигателя. Нам понадобится П-образное трансформаторное железо. Его можно взять, например, от старого вибрационного насоса «Ручеек», «Малыш». Разбираем его нижнюю часть, хорошо нагреваем ее. Там имеются катушки, залитые эпоксидной смолой.

Эпоксидку разогреваем и выбиваем катушки с сердечником. С помощью наждака или болгарки срезаем губки сердечника.

Намотаны эти катушки как раз на П-образном трансформаторном железе.

Не нужно соблюдать углы. Нужно сделать место, в которое легко ляжет маленький и большой якорь.

При обработке необходимо учесть, что железо слоеное. Нельзя обрабатывать его так, чтобы камень его задирал. Нужно обрабатывать в таком направлении, чтобы слои лежали друг к другу, чтобы не было задиров. После обработки снимите все фаски и заусенцы, так как придется работать с эмалированным проводом, нежелательно его поцарапать.

Теперь нам надо сделать две катушки для этого сердечника, которые разместим с обеих сторон. Замеряем толщину и ширину сердечника в самых широких местах, по заклепкам. Берем плотный картон, размечаем его по размерам сердечника. Учитываем размер паза в сердечнике между катушками. Проводим неострым краем ножниц по местам сгиба, чтобы удобнее было сгибать картон. Вырезаем заготовку для каркаса катушек. Сгибаем по линиям сгиба. Получается каркас катушки.

Теперь делаем четыре крышки для каждой стороны катушек. Получаем два картонных каркаса для катушек.

Рассчитываем количество витков катушек по формуле для трансформаторов.

13200 делим на сечение сердечника в см2. Сечение нашего сердечника:

3,6 см х 2,1 см = 7,56 см2.

13200 : 7,56 = 1746 витков на две катушки. Это число не обязательное, отклонение 10% в обе стороны никакой роли не сыграет. Округляем в большую сторону, 1800 : 2 = 900 витков нужно намотать на каждую катушку. У нас есть провод 0,16 мм, он вполне подойдет для наших катушек. Наматывать можно как угодно. По 900 витков можно намотать и вручную. Если ошибетесь на 20-30 витков, то ничего страшного не будет. Лучше намотать больше. Перед намоткой шилом делаем отверстия по краям каркаса для вывода провода катушек.

На конец провода надеваем термоусадочный кембрик. Конец провода вставляем в отверстие, загибаем, и начинаем намотку катушки.

Заполнение получилось малым, поэтому можно мотать и проводом толще. На второй конец припаиваем проводок с кембриком и вставляем в отверстие. Не заматываем катушку, пока не провели испытание.

Обе катушки намотаны. Надеваем их на сердечник таким образом, чтобы провода шли вниз и были с одной стороны. Катушки абсолютно одинаково намотаны, направление витков в одну сторону, концы выведены одинаково. Теперь необходимо один конец с одной катушки и один с другой соединить, а на оставшиеся два конца подать напряжение 220 вольт. Главное не запутаться и соединить правильные провода. Чтобы понять порядок соединения, нужно мысленно разогнуть наш П-образный сердечник в одну линию, чтобы витки в катушках располагались в одном направлении, переходили от одной катушки во вторую. Соединяем два начала катушек. На два конца подаем напряжение.

Сравним дроссель фабричный и самодельный.

Проверяем заводской дроссель металлической пластинкой на вибрацию места витковых замыканий якоря двигателя и отмечаем их маркером. Теперь то же самое делаем на нашем самодельном дросселе. Результаты получились идентичные. Наш новый дроссель работает нормально.

Снимаем наши катушки с сердечника, обмотки фиксируем изолентой. Пайку также изолируем лентой. Одеваем готовые катушки на сердечник, припаиваем к концам проводов питание 220 В. Дроссель готов к эксплуатации.

Межвитковое замыкание якоря

Для проверки якоря воспользуемся специальным прибором, который представляет трансформатор с вырезанным сердечником. Когда мы кладем якорь в этот зазор, его обмотка начинает работать как вторичная обмотка трансформатора. При этом, если на якоре имеется межвитковое замыкание, от местного перенасыщения железом металлическая пластинка, которая будет находиться сверху якоря, будет вибрировать, либо примагничиваться к корпусу якоря.

Включаем прибор. Для наглядности мы специально замкнули две ламели на коллекторе, чтобы показать каким образом производится диагностика. Помещаем пластинку на якорь и сразу видим результат. Наша пластинка примагнитилась и начала вибрировать. Поворачиваем якорь, витки смещаются, и пластинка перестает вибрировать.

Теперь удалим замыкание ламелей для проверки. Повторяем проверку и видим, что обмотка якоря исправна, пластинка не вибрирует ни в каких местах.

Способ №2 проверки якоря на витковое замыкание

Этот способ подходит для тех, кто не занимается профессиональным ремонтом электроинструмента. Для точной диагностики межвиткового замыкания требуется скоба с катушкой.

Мультиметром можно выяснить лишь обрыв катушки якоря. Лучше для этой цели применять аналоговый тестер. Между каждыми двумя ламелями замеряем сопротивление.

Сопротивление должно быть везде одинаковое. Бывают случаи, когда обмотки не сгорели, коллектор нормальный. Тогда замыкание витков определяют только с помощью прибора со скобой от трансформатора. Теперь устанавливаем мультиметр на 200 кОм, один щуп замыкаем на массу, а другим касаемся каждой ламели коллектора, при условии, что нет обрыва катушек.

Если якорь не прозванивается на массу, то он исправный, либо может быть межвитковое замыкание.

Межвитковое замыкание трансформатора

У трансформаторов есть распространенная неисправность – замыкание витков между собой. Мультиметром не всегда можно выявить этот дефект. Необходимо внимательно осмотреть трансформатор. Провод обмоток имеет лаковую изоляцию, при ее пробое между витками обмотки есть сопротивление, которое не равно нулю. Оно и приводит к разогреву обмотки.

При осмотре трансформатора на нем не должно быть гари, обуглившейся бумаги, вздутия заливки, почернений. Если известен тип и марка трансформатора, можно узнать, какое должно быть сопротивление обмоток. Мультиметр переключают в режим сопротивления. Сравнивают измеренное сопротивление со справочными данными. Если отличие составляет больше 50%, то обмотки неисправны. Если данные сопротивления не удалось найти в справочнике, то наверняка известно количество витков, тип и сечение провода, можно вычислить сопротивление по формулам.

Чтобы проверить трансформатор блока питания с выходом низкого напряжения, подключаем к первичной обмотке напряжение 220 В. Если появился дым, запах, то сразу отключаем, обмотка неисправна. Если таких признаков нет, то измеряем напряжение тестером на вторичной обмотке. При заниженном на 20% напряжении есть риск выхода из строя вторичной обмотки.

Если есть второй исправный трансформатор, то путем сравнения сопротивлений выясняют исправность обмоток. Чтобы проверить более подробно, применяют осциллограф и генератор.

Источник: zen.yandex.ru

1. Тест на 180 градусов

  • Мультиметр устанавливаем в режим измерения сопротивления, предел измерения 200 Ом.
  • Щупы подсоединяем к двум ровно противоположным контактом коллектора. Две эти точки находятся друг от друга на 180 градусов.
  • Измеряем сопротивление. Запоминаем или записываем.

  • Далее производим замеры по кругу, между остальными противоположными пластинами.

Подводим итоги. Сами значения сопротивления нам неинтересны. Главное, чтобы они были одинаковы. То есть, если мультиметр при первом измерении показал, например, значение 1,5 Ом, то и между остальными противоположными пластинами должно быть такое же сопротивление. Если сопротивление между некоторыми точками больше ̶̶ значит в этой обмотке обрыв. Если сопротивление, наоборот, меньше ̶̶ короткое замыкание.

На графике отчетливо отслеживается внутренне замыкание в одной из обмоток.

2. Тестирование соседних контактов

  • Прибор остается в том же положении — измерение сопротивления, предел 200 Ом.
  • Щупы мультиметра подключаем к двум соседним пластинам коллектора.
  • Производим измерение, запоминаем результат.
  • Далее производим замер между следующей парой контактов. И так далее, по кругу.
  • Сравниваем результаты.

В этом тесте, как и в предыдущем, главное – равенство значений. И, так же как и в прошлом тесте, увеличение сопротивления обозначает обрыв провода обмотки, а уменьшение сопротивления – короткое замыкание.

На графике видно внутренне, межвитковое замыкание в одной из обмоток.

3. Проверка замыкания на корпус

  • Мультиметр установлен в режим измерения сопротивления ̶̶ 200 Ом.
  • Один щуп прибора ставим на пластину коллектора, второй на корпус якоря (вал или магнитопровод).
  • Поочередно производим замеры между каждой ламелью и корпусом.

Если мультиметр показывает «1» ̶̶ замыкания на корпус нет. Если показывает какие-либо значения, или «0» и издает звуковой сигнал, то изоляция пробита.

Результаты проверки

Якорь электродвигателя исправен если:
1. Сопротивление между всеми противоположными контактами равно.
2. Сопротивление между всеми соседними контактами равно.
3. Сопротивление между пластинами коллектора и корпусом равно бесконечности «1».

Рекомендации

У электронных мультиметров, особенно бытового назначения, есть некоторая погрешность. Поэтому лучше использовать стрелочный прибор. Если же такового нет, желательно определить и учитывать погрешность в измерениях. Делается это следующим образом:

  • в режиме измерения сопротивления, с пределом 200 Ом, соединяем щупы вместе;
  • если показания прибора «ноль» ̶̶ погрешности нет;
  • если вместо нуля какая либо другая цифра, это и будет погрешность.

Допустим, мультиметр показал 0,1 Ом. Значит, в первом и втором тесте разница сопротивлений менее чем 0,1 Ом не считается повреждением.

Техника безопасности

Во время проверки ротора, необходимо соблюдать следующие меры безопасности:

  • перед разборкой отключить электродвигатель от сети;
  • в поврежденном якоре могут быть острые кромки, оторванные пластины коллектора или торчать поврежденные провода, поэтому необходимо использовать рабочие перчатки.

Источник: SdelaySam-SvoimiRukami.ru


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.