Симисторный регулятор мощности схема


Регулятор мощности 12 вольт своими рукамиУстройства, позволяющие управлять работой электрических приборов, подстраивая их под оптимальные характеристики для пользователя, прочно вошли в обиход. Одним из таких приспособлений является регулятор мощности. Применение таких регуляторов востребовано при использовании электронагревательных и осветительных приборов и в устройствах с двигателями. Схемотехника регуляторов разнообразна, поэтому порой бывает затруднительно подобрать себе оптимальный вариант.

Простейший регулятор энергии

Первые разработки устройств, изменяющие подводимую к нагрузке мощность, были основаны на законе Ома: электрическая мощность равняется произведению тока на напряжение или произведению сопротивления на ток в квадрате. На этом принципе и сконструирован прибор, получивший название — реостат. Он располагается как последовательно, так и параллельно подключённой нагрузке. Изменяя его сопротивление, регулируется и мощность.

Ток, поступая на реостат, разделяется между ним и нагрузкой. При последовательном включении контролируются сила тока и напряжение, а при параллельном — только значение разности потенциалов. В зависимости от материала, из которого изготовлено сопротивление, реостаты могут быть:


  • Хема регулятора мощности на симистореметаллическими;
  • жидкостными;
  • угольными;
  • керамическими.

Согласно закону сохранения энергии, забранная электрическая энергия не может просто исчезнуть, поэтому в резисторах мощность преобразуется в теплоту, и при большом её значении должна от них отводиться. Для обеспечения отвода используется охлаждение, которое выполняется с помощью обдува или погружением реостата в масло.

Реостат — довольно универсальное приспособление. Единственный, но существенный его минус — это выделение тепла, что не позволяет выполнить устройство с небольшими размерами при необходимости пропускать через него мощность большой величины. Управляя силой тока и напряжения, реостат часто используется в маломощных линиях бытовых приборов. Например, в аудиоаппаратуре для регулировки громкости. Выполнить такой регулятор тока своими руками совсем несложно, в большей мере это касается проволочного реостата.

Для его изготовления понадобится константовая или нихромовая проволока, которая наматывается на оправку. Регулирование электрической мощности происходит путём изменения длины проволоки.


Виды современных устройств

Развитие полупроводниковой техники позволило осуществить управление мощностью, используя радиоэлементы с коэффициентом полезного действия от восьмидесяти процентов. Это дало возможность их комфортно применить в сети с напряжением 220 вольт, не требуя при этом больших систем охлаждения. А появление интегральных микросхем и вовсе позволило достичь миниатюрных размеров всего регулятора в целом.

На сегодняшний момент производство выпускает следующие типы приборов:

  1. Фазовые. Используются для управления яркости свечения ламп накаливания или галогенных ламп. Другое их название — диммеры.
  2. регулятор мощности на тиристореТиристорные. В основе работы лежит использование задержки включения тиристорного ключа на полупериоде переменного тока.
  3. Симисторные. Мощность регулируется вследствие изменения количества полупериодов напряжения, которые действуют на нагрузку.
  4. Регулятор хода. Позволяет плавно изменять электрическую мощность, подаваемую на электродвигатель.

При этом регулировка происходит независимо от формы входного сигнала. По своему виду расположения приборы управления разделяются на портативные и стационарные. Они могут выполняться как в независимом корпусе, так и интегрироваться в аппаратуру. К основным параметрам, характеризующим регуляторы электрической энергии, относят:

  • плавность регулировки;
  • рабочую и пиковую подводимую мощность;
  • диапазон входного рабочего сигнала;
  • КПД.

Таким образом, современный регулятор электрической мощности представляет собой электронную схему, использование которой позволяет контролировать количество энергии, пропускаемой через него.

Тиристорный прибор управления

регулятор мощности для паяльника своими рукамиПринцип действия такого прибора не отличается особой сложностью. В основном тиристорный преобразователь используется для управления устройствами малой мощности. Типовая схема тиристорного регулятора мощности состоит непосредственно из самого тиристора, биполярных транзисторов и резисторов, устанавливающих их рабочую точку, и конденсатора.


Транзисторы, работая в ключевом режиме, формируют импульсный сигнал. Как только значение напряжения на конденсаторе сравнивается с рабочим, транзисторы открываются. Сигнал подаётся на управляющий вывод тиристора, открывая и его. Конденсатор разряжается и ключ запирается. Так повторяется в цикле. Чем больше задержка, тем в нагрузку поступает меньше мощности.

Преимущества такого типа регулятора в том, что он не требует настройки, а недостаток в чрезмерном нагреве. Для борьбы с перегревом тиристора используется активная или пассивная система охлаждения.

Используется такого типа регулятор для преобразования мощности, подающейся как к бытовым приборам (паяльник, электронагреватель, спиральная лампа), так и к промышленным (плавный запуск мощных силовых установок). Схемы включения могут быть однофазными и трёхфазными. Наиболее применяемые: ку202н, ВТ151, 10RIA40M.

Симисторный преобразователь мощности

Симистор — полупроводниковый прибор, предназначенный для использования в цепи переменного тока. Отличительной чертой прибора является то, что его выводы не имеют разделения на анод и катод. В отличие от тиристора, пропускающего ток только в одну сторону, симистор проводит ток в обоих направлениях. Именно поэтому он используется в сетях переменного тока.

Регулятор мощности на симисторе


Важное отличие симисторных схем от тиристорных состоит в том, что нет необходимости в выпрямительном устройстве. Принцип действия основан на фазном управлении, то есть на изменении момента открытия симистора относительно перехода переменного напряжения через ноль. Такое устройство позволяет управлять нагревателями, лампами накаливания, оборотами электродвигателя. Сигнал на выходе симистора имеет пилообразную форму с управляемой длительностью импульса.

Самостоятельное изготовление такого вида приборов проще, чем тиристорного. Широкую популярность получили симисторы средней мощности типа: BT137–600E, MAC97A6, MCR 22−6. Схема регулятора мощности на симисторе с использованием таких элементов отличается простотой изготовления и отсутствия необходимости в настройке.

Фазовый способ трансформации

регулятор напряжения фазовыйСам по себе диммер имеет широкую область применения. Одним из вариантов его использования является регулировка интенсивности освещения. Электрическая схема прибора чаще всего реализуется на специализированных микроконтроллерах, использующих в своей работе встроенную электронную схему понижения напряжения. Из-за этого диммеры способны плавно изменять мощность, но чувствительны к помехам.


Фазовые регуляторы мощности не стабилизируются с помощью стабилитронов, а в качестве стабилизатора используют попарно работающие тиристоры. Основа их работы лежит в изменении угла открывания ключевого тиристора, в результате чего на нагрузку поступают сигналы с отрезанной начальной частью полупериода, снижая действующую величину напряжения. К недостаткам диммеров относят высокий коэффициент пульсаций и низкий коэффициент мощности выходного сигнала.

При работе диммеров в широком спектре частот возбуждаются электромагнитные помехи. Такие излучения приводят к снижению КПД из-за появления паразитного тока в проводниках. Для борьбы с такими токами в конструкцию добавляются индуктивно-ёмкостные фильтры.

Практические примеры для повторения

Наибольшей популярностью среди радиолюбителей пользуются схемы, предназначенные для управления яркостью светильника и изменения мощности паяльника. Такие схемы просты для повторения и могут собираться без использования печатных плат простым навесным монтажом.

Схемы, выполненные самостоятельно, ничем не уступают по работоспособности заводским, так как не требуют настроек и при исправных радиодеталях сразу готовы к использованию. В случае отсутствия возможности или желания изготовить прибор своими руками с «нуля», можно приобрести наборы для самостоятельного изготовления. Такие комплекты содержат все необходимые радиоэлементы, печатную плату и схему с инструкцией по сборке.

Доминирующая схема

Такой прибор проще всего собрать на тиристоре. Работа схемы основана на способности открывания тиристора при прохождении входной синусоиды через ноль, в результате чего сигнал обрезается, и величина напряжения на нагрузке изменяется.


регулятор напряжения 220в своими рукамиСхема для повторения тиристорного регулятора мощности построена на использовании тиристора VS1, в качестве которого используется КУ202Н. Это радиоэлемент изготавливается из кремния и имеет структуру p-n-p типа. Применяется в качестве симметричного переключателя сигналов средней мощности и коммутации силовых цепей на переменном токе.

При подаче напряжения 220в входной сигнал выпрямляется и поступает на конденсатор C1. Как только значение падения напряжения на C1 сравняется с величиной разности потенциалов, в точке между сопротивлениями R3 и R4 биполярные транзисторы VT1 и VT2 открываются. Уровень напряжения ограничивается стабилитроном VD1. Сигнал поступает на управляющий вывод КУ202Н, а конденсатор C1 разряжается. При возникновении сигнала на управляющем выводе тиристор отпирается. Как только конденсатор разрядится, VT1 и VT2 закрываются, соответственно запирается и тиристор. При следующем полупериоде входного сигнала всё повторяется вновь.

В качестве транзисторов используются КТ814 и КТ815. Время разряда регулируется с помощью R5 и мощность тоже. Стабилитрон используется с напряжением стабилизации от 7 до 14 вольт.


Такой регулятор возможно использовать не только как диммер, но и для управления мощностью коллекторного двигателя. Доминирующая схема может работать при токах до 10 ампер, эта величина напрямую зависит от характеристик используемого тиристора, при этом он обязательно устанавливается на радиатор.

Контроллер нагрева паяльника

Управление мощностью паяльника не только положительно сказывается на сроке его службы, предотвращая жало и внутренние его элементы от перегревания, но и позволяет выпаивать радиоэлементы, критичные к температуре устройства.

Приборы для контроля температуры паяльника выпускаются давно. Одним из его видов был отечественный прибор, выпускающийся под названием «Добавочное устройство для электропаяльника типа П223». Он позволял подключать низковольтный паяльник к сети 220В.

Проще всего выполняется регулятор для паяльника с применением симистора КУ208Г.

Регулятор мощности своими рукамиСиловые контакты подключаются последовательно к нагрузке. Поэтому ток, протекающий через симистор, совпадает с током нагрузки. Для управления ключевым режимом применяется динистор VS2. Конденсатор C1 заряжается через резисторы: R1 и R2. Индикация работы организовывается под средством VD1 и светодиода LED. Из-за того, что для изменения напряжения на конденсаторе требуется время, образуется сдвиг фаз между сетевым и конденсаторным напряжением. Изменяя величину сопротивления R2, регулируется величина фазового сдвига. Чем дольше конденсатор заряжается, тем меньше находится в открытом состоянии симистор, а значит и значение мощности ниже.


Такой регулятор рассчитан на подключение нагрузки с мощностью до 300 ватт. При использовании паяльника с мощностью более 100 ватт симистор следует устанавливать на радиатор. Изготовленная плата с лёгкостью помещается на текстолите размером 25х30 мм и свободно размещается во внутренней сетевой розетке.

Источник: pochini.guru

Принцип работы

Регулятор мощности на симисторе работает подобно электронному ключу, периодически открываясь и закрываясь, с частотой, заданной схемой управления. При отпирании симистор пропускает часть полуволны сетевого напряжения, а значит потребитель получает только часть номинальной мощности.

Делаем своими руками

На сегодняшний день ассортимент симисторных регуляторов в продаже не слишком велик. И, хотя цены на такие устройства невелики, зачастую они не отвечают требованиям потребителя. По этой причине рассмотрим несколько основных схем регуляторов, их назначение и используемую элементную базу.


Схема прибора

Простейший вариант схемы, рассчитанный для работы на любую нагрузку. Используются традиционные электронные компоненты, принцип управления фазово-импульсный.

Основные компоненты:

  • симистор VD4, 10 А, 400 В;
  • динистор VD3, порог открывания 32 В;
  • потенциометр R2.

Ток, протекающий через потенциометр R2 и сопротивление R3, каждой полуволной заряжает конденсатор С1. Когда на обкладках конденсатора напряжение достигнет 32 В, произойдёт открытие динистора VD3 и С1 начнёт разряжаться через R4 и VD3 на управляющий вывод симистора VD4, который откроется для прохождения тока на нагрузку.

Длительность открытия регулируется подбором порогового напряжения VD3 (величина постоянная) и сопротивлением R2. Мощность в нагрузке прямо пропорциональна величине сопротивления потенциометра R2.

Дополнительная цепь из диодов VD1 и VD2 и сопротивления R1 является необязательной и служит для обеспечения плавности и точности регулировки выходной мощности. Ограничение тока, протекающего через VD3, выполняет резистор R4. Этим достигается необходимая для открытия VD4 длительность импульса. Предохранитель Пр.1 защищает схему от токов короткого замыкания.

Подбирать симисторы следует по величине нагрузке, исходя из расчёта 1 А = 200 Вт.

Используемые элементы:

  • Динистор DB3;
  • Симистор ТС106-10-4, ВТ136-600 или другие, требуемого номинала по току 4-12А.
  • Диоды VD1, VD2 типа 1N4007;
  • Сопротивления R1100 кОм, R3 1 кОм, R4 270 Ом, R5 1,6 кОм, потенциометр R2 100 кОм;
  • Конденсатор С1 0,47 мкФ (рабочее напряжение от 250 В).

Отметим, что схема является наиболее распространённой, с небольшими вариациями. Например, динистор может быть заменён на диодный мост или может быть установлена помехоподавляющая RC цепочка параллельно симистору.

Более современной является схема с управлением симистора от микроконтроллера – PIC, AVR или другие. Такая схема обеспечивает более точную регулировку напряжения и тока в цепи нагрузки, но является и более сложной в реализации.

Сборка

Сборку регулятора мощности необходимо производить в следующей последовательности:

  1. Определить параметры прибора, на который будет работать разрабатываемое устройство. К параметрам относятся: количество фаз (1 или 3), необходимость точной регулировки выходной мощности, входное напряжение в вольтах и номинальный ток в амперах.
  2. Выбрать тип устройства (аналоговый или цифровой), произвести подбор элементов по мощности нагрузки. Можно проверить своё решение в одной из программ для моделирования электрических цепей – Electronics Workbench, CircuitMaker или их онлайн аналогах EasyEDA, CircuitSims или любой другой на ваш выбор.
  3. Рассчитать тепловыделение по следующей формуле: падение напряжения на симисторе (около 2 В) умножить на номинальный ток в амперах. Точные значения падения напряжения в открытом состоянии и номинальный пропускаемый ток указаны в характеристиках симистора. Получаем рассеиваемую мощность в ваттах. Подобрать по рассчитанной мощности радиатор.
  4. Закупить необходимые электронные компоненты, радиатор и печатную плату.
  5. Произвести разводку контактных дорожек на плате и подготовить площадки для установки элементов. Предусмотреть крепление на плате для симистора и радиатора.
  6. Установить элементы на плату при помощи пайки. Если нет возможности подготовить печатную плату, то можно использовать для соединения компонентов навесной монтаж, используя короткие провода. При сборке особое внимание уделить полярности подключения диодов и симистора. Если на них нет маркировки выводов, то прозвонить их при помощи цифрового мультиметра или «аркашки».
  7. Проверить собранную схему мультиметром в режиме сопротивления. Полученное изделие должно соответствовать изначальному проекту.
  8. Надёжно закрепить симистор на радиатор. Между симистором и радиатором не забыть проложить изолирующую теплопередающую прокладку. Скрепляющий винт надёжно заизолировать.
  9. Поместить собранную схему в пластиковый корпус.
  10. Вспомнить о том, что на выводах элементов присутствует опасное напряжение.
  11. Выкрутить потенциометр на минимум и произвести пробное включение. Измерить напряжение мультиметром на выходе регулятора. Плавно поворачивая ручку потенциометра следить за изменением напряжения на выходе.
  12. Если результат устраивает, то можно подключать нагрузку к выходу регулятора. В противном случае необходимо произвести регулировки мощности.

Регулировка мощности

За регулировку мощности отвечает потенциометр, через который заряжается конденсатор и разрядная цепь конденсатора. При неудовлетворительных параметрах выходной мощности следует подбирать номинал сопротивления в разрядной цепи и, при малом диапазоне регулировки мощности, номинал потенциометра.

Блиц-советы

  • продлить срок службы лампы, регулировать освещение или температуру паяльника поможет простой и недорогой регулятор на симисторах.
  • выбирайте тип схемы и параметры компонентов по планируемой нагрузке.
  • тщательно проработайте схемные решения.
  • будьте внимательны при сборке схемы, соблюдайте полярность полупроводниковых компонентов.
  • не забывайте, что электрический ток есть во всех элементах схемы и он смертельно опасен для человека.

Источник: orcmaster.com

Применение симисторных регуляторов в быту

Подобные устройства применяются в быту везде, где есть необходимость плавно изменять мощность прибора или инструмента. В целом, работает такая схема по принципу снижения сетевого напряжения 230 В. А если напряжение питания электроприбора уменьшать, то пропорционально будет изменяться и его мощность.

Пример. Допустим у нас есть рассчитанный на сетевое напряжение 230 В паяльник мощностью 80 Вт. Для пайки обычных радиодеталей и нетолстых проводов этой мощности слишком много. Жало перегревается, канифоль горит и чернеет, припой не прилипает, а скатывается шариками. Это означает, что температура на кончике жала слишком большая.

А вот если уменьшить мощность такого паяльника, то перечисленные проблемы исчезнут. Сделать это можно путем снижения напряжения его питания с 230 В до, например, 80 В (почти в три раза). А поскольку мощность (а также температура нагрева жала) снижается пропорционально, то в итоге мы получим паяльник на 25-30 Вт.
Симисторные регуляторы применяются для плавного изменения мощности:

  • паяльников (именно для паяльника было сделано описанное в статье устройство);
  • электрических сушилок для фруктов;
  • утюгов;
  • обогревателей;
  • других нагревательных приборов;
  • пылесосов;
  • электроинструментов – болгарок, орбитальных шлифовальных машинок, лобзиков;
  • другого оборудования с двигателями – точильных станков, сверлильных и прочих;
  • ламп накаливания.

Касательно последнего пункта стоит отметить, что именно такая схема симисторного регулятора не очень подходит. Но и об этом подробнее сказано ниже.

Простейшая схема симисторного регулятора и принцип ее работы

На рисунке ниже изображена самая простая схема регулятора мощности на симисторе. Проще никак. Для начала рассмотрим компоненты, из которых состоит устройство, и зачем они там нужны.

схема симисторного регулятора
Схема регулятора мощности на симисторе

В данной схеме присутствует всего 5 радиодеталей:

  1. Симистор U1.
  2. Динистор D1.
  3. Конденсатор C1.
  4. Переменный резистор RV1.
  5. Резистор R1.

Симистор U1 – является основным компонентом схемы. Все остальные радиодетали «работают на него». У симистора бывает всего два рабочих состояния – он может быть либо открыт, либо закрыт. Когда он открыт, электрический ток беспрепятственно протекает через него от источника питания к нагрузке. Когда закрыт – ток не течет.

Чтобы «заставить» симистор открыться и пропускать ток, на его управляющий вывод (на схеме находится слева) необходимо подать небольшое напряжение. Закрывается же он «самостоятельно», как только ток перестает течь через основные выводы.

В целом, работает это следующим образом. Напряжение в наших розетках переменное, соответственно, ток тоже бежит то в одну сторону, то в другую с частотой 50 раз в секунду. Если в момент, когда он течет, например, от источника питания к нагрузке, «заставить» симистор открыться, наш прибор получит «дозу» питания и проработает немножко.

Затем ток меняет свое направление, так как напряжение у нас переменное. Это приводит к тому, что симистор закрывается.

Поскольку направление тока из розетки может изменяться по направлению 50 раз в секунду, то мы каждый этот раз можем «пропустить» через нагрузку столько тока, сколько нам надо для получения желаемой мощности.

Например, если пропустим только половину, то 80-ваттный паяльник будет потреблять только 40 Вт, и греться в два раза слабее. А для этого нам надо каждый раз открывать симистор ровно на половине полуволны переменного напряжения. Вторая полуволна будет как бы срезаться, и для питания прибора не использоваться.

Динистор D1 – как раз и «занимается» тем, что заставляет симистор открываться в нужный нам момент. У этого компонента тоже есть всего два состояния – открыт (пропускает ток) и закрыт (не пропускает). Чтобы динистор открылся, и подал на симистор управляющий сигнал, к нему необходимо приложить определенное напряжение (около 30 В). Если напряжение меньше этого значения – он закрыт.

Конденсатор C1 – нужен для того, чтобы открывать динистор D1. Происходит это следующим образом. Когда переменный ток течет в одном из направлений, конденсатор «постепенно» заряжается, и напряжение на его выводах увеличивается. Когда оно достигает значения, достаточного для открывания динистора, последний именно это и делает. А конденсатор возвращается в исходное состояние, то есть, разряжается. И так 50 раз в секунду.

Резисторы R1 и RV1 – ограничивают ток через наш конденсатор. Чем меньше их суммарное сопротивление, тем быстрее конденсатор заряжается и достигает нужного для открытия динистора напряжения. Когда сопротивление резисторов увеличивается, ток течет меньший, и заряд конденсатора происходит медленнее.

Теперь рассмотрим слаженную работу всех этих компонентов вместе. Симистор на каждой полуволне переменного напряжения (50 раз в секунду) открывается и закрывается на определенный промежуток времени, пропуская, или наоборот, не пропуская через себя ток. В зависимости от длительности этого промежутка времени нагрузка (паяльник, двигатель, лампа) получает то или иное напряжение.

Открывается симистор в тот момент, когда на динисторе появляется достаточное для его пробоя (открывания) напряжение. За то, на каком моменте полуволны это произойдет, отвечает конденсатор. А насколько быстро или медленно он будет заряжаться, зависит от сопротивления резисторов в данный момент.

В итоге, если мы будем вращать ручку переменного резистора, мы будем менять время заряда конденсатора, момент срабатывания динистора и открывания симистора. Когда сопротивление потенциометра минимальное (ручка выкручена до упора влево), ток через конденсатор максимально большой, заряжается он быстро, динистор открывается рано, и симистор на протяжение почти всей полуволны пропускает ток на нагрузку.

Когда мы выкручиваем ручку в сторону увеличения сопротивления потенциометра, процесс заряда конденсатора замедляется, динистор открывается позже, а симистор пропускает в результате меньше тока на нагрузку.

Сборка регулятора мощности на симисторе своими руками

От теории плавно переходим к практике. Соберем симисторный регулятор мощности, используя описанную выше схему. Все ее компоненты мы «запрячем» в корпус наружной розетки, превратив ее в источник регулируемого напряжения. Хотя делать это необязательно.

Компоненты для сборки регулятора

Все вышеописанные радиодетали можно без проблем купить в любом радиомагазине. Мы же для сборки нашего регулятора возьмем их из регулятора оборотов вышедшей из строя орбитальной шлифовальной машинки (как раз эта плата уцелела и все компоненты рабочие). Вот она.
регулятор оборотов
Отсюда мы заберем симистор, динистор, конденсатор и резистор. Потенциометр возьмем другой, так как имеющуюся «крутилку» вмонтировать в розетку будет невозможно. Вот что остается.
симистор, динистор, конденсатор и резистор
На фото можно видеть не один резистор, а два. Изначально регулятор был собран с использованием и второго резистора, но после тестирования прибора он был убран. Почему – сказано ниже.
Итак, имеем:

  1. Симистор BTA06-600C. Такая маркировка означает, что он может пропускать ток силой до 6 А и рассчитан на напряжение до 600 В. Деталь можно заменить на аналогичные, но с учетом этих двух характеристик. Поскольку регулятор у нас для сетевого напряжения, то и симистор должен быть рассчитан на соответствующее напряжение. Чтобы он не перегорел от всплесков напряжения в сети, берем с запасом. Сила тока рассчитывается исходя из мощности подключаемой к регулятору нагрузки. Для этого мощность нагрузки надо разделить на напряжение в сети. Например, для паяльника на 80 Вт максимальная сила тока, которую будет пропускать симистор, составит всего 0,35 А. Как видим, нашего 6-амперного симистора хватит с большим запасом.
  2. Динистор DB3. Через него текут минимальные токи, да и напряжение сравнительно невысокое. Потому можно взять практически любой похожий.
  3. Конденсатор. Пленочный, неполярный, рассчитанный на напряжение более 250 В. Емкость – 0,1 микрофарад (или 100 нанофарад, что одно и то же). Обозначается такой кодом 104. Максимальное напряжение тоже обязательно должно быть указано. Если такой надписи нет, то конденсатор использовать нельзя. Электролитические полярные конденсаторы тоже использовать нельзя.
  4. Резистор R1. Постоянный. Рассчитанный на рассеиваемую мощность 1 Вт. Сопротивление в данном случае 68 кОм. Хотя во многих схемах используется резистор с гораздо меньшим сопротивлением. Почему так, станет понятно во время испытаний. У начинающих радиолюбителей может возникнуть вопрос – зачем нужен этот резистор. А нужен он для того, чтобы ограничивать ток, когда ручка потенциометра выкручена так, что его сопротивление равно или близко к нулю. Если бы не было R1, то весь ток потек бы через RV1, и он бы перегорел от перегрева.
  5. Переменный резистор. В распаянной схеме стоял на 250 кОм. Подходящего с таким номиналом не нашлось, потому был взят на 470 кОм. К нему параллельно был припаян постоянный резистор на 330 кОм, в результате чего переменный стал примерно на 250 кОм.
  6. Маленький резистор (на фото). В разобранной схеме был на 330 кОм, и был впаян параллельно переменному резистору. Позже его пришлось удалить, так как из-за него был высокий минимальный порог регулируемого напряжения.

Остановимся немного на резисторах, так как от них зависит регулировочный диапазон в данной схеме. Начнем с R1. Чем меньше его сопротивление, тем большее максимальное напряжение мы сможем получить на выходе регулятора. Однако при уменьшении его сопротивления возрастает ток, протекающий через него во время заряда конденсатора. Соответственно, резистор может нагреваться. А потому надо брать уже не на 1 Вт, а на 2 Вт.

Переменный резистор или потенциометр. От его номинала зависит минимальное напряжение, до которого будет снижаться сетевое при помощи регулятора. Так, если взять на 250 кОм, то напряжение удастся понизить примерно до 50-70 В (при R1 68 кОм). Если же взять на 500 кОм, то напряжение получится понизить еще.

Кроме радиодеталей для сборки регулятора понадобится розетка, отрезок кабеля и вилка.
розетка, вилка и кабель

Розетку неплохо было бы закрепить на каком-либо основании, например, на деревянной колодке. Хотя при стационарном использовании ее можно пристроить и на стене, и на столе, и под ним.

Сборка регулятора и некоторые особенности устройства

Начинать сборку желательно с самого большого компонента. В данном случае им является переменный резистор. Как видно, даже штатная начинка розетки не позволяет использовать габаритный потенциометр. Кроме того, нам же внутрь еще парочку деталей запихнуть надо. В итоге, после нескольких примерок переменный резистор было решено закрепить следующим образом.
переменный резистор
Лучше, конечно, было бы устанавливать его в ту часть розетки, где будет вся остальная начинка. А так придется соединять схему проводами достаточной для сборки и разборки длины.

Далее идет вторая по размерам деталь – симистор. На фото он установлен на небольшой радиатор. Но это не для охлаждения, так как мощность, которую мы будем питать от регулятора, всего 80 Вт. Однако с радиатором симистор встал на свое место, как родной, и крепить его никак не пришлось.

Следующим шагом идет пайка динистора. Согласно схеме – он находится одним выводом на управляющем выводе симистора. В этом симисторе управляющим является крайний правый. При распайке обвязки симистора важно ничего не перепутать. Потому, если вы используете другие компоненты (аналоги), уточняйте назначение выводов.

Далее один из проводов с вилки напрямую вставляется в один из контактов розетки. Второй же мы будем «разрывать» нашей схемой. На фото выше показано, как красным проводом соединен регулируемый контакт розетки с одной из силовых ножек симистора. Таковых у него две. И обе они равнозначные. Потому неважно, на какой из этих двух ножек будет «сидеть» наша схема.
соединение регулируемого контакта с симистором

Теперь свободный вывод динистора соединяем конденсатором с тем выводом симистора, который мы красным проводом подвели к контакту розетки. Сюда же (к динистору и конденсатору) паяем провод, который пойдет на один из выводов переменного резистора. Кстати, две из трех ножек переменного резистора необходимо предварительно соединить. Как на схеме.

Далее к проводу, который входит в регулируемый контакт розетки, паяется резистор (в нашем случае на 68 кОм 1 Вт). Остается только соединить свободный вывод переменного резистора с постоянным, соединив их, таким образом, последовательно.

Все. Регулятор готов. На фото, правда, есть еще маленький резистор. Он соединен параллельно с переменным резистором, как и было в оригинале на плате шлифовальной машинки. Однако после теста он был убран, так как из-за него напряжение удавалось понижать только до 120 В.

Проверка регулятора мощности

После сборки симисторного регулятора его необходимо протестировать. Это позволит:

  1. Убедиться в его работоспособности.
  2. «На ходу» скорректировать диапазон регулировки напряжения.

Для проверки нужен мультиметр и нагрузка. Мультиметр необходимо подсоединить к контактам регулируемой розетки, предварительно включив на нем режим измерения переменного напряжения более 300 В (в дешевых приборах, как на фото, это 750 В). Нагрузку нужно подключать обязательно. Иначе ток через нашу схему не пойдет, и ее работы мы, соответственно, не увидим.

⚠ Внимание! Компоненты схемы и штатная начинка розетки находятся под опасным для жизни напряжением. Потому ни в коем случае нельзя прикасаться к радиодеталям, оголенным проводам и так далее. Браться руками можно только за пластиковый корпус розетки и ручку потенциометра.

Чтобы не рисковать, проверить прибор можно и в собранном состоянии. Для этого в нашу регулируемую розетку включаем тройник или удлинитель с двумя розетками. В одну из них включаем нагрузку (паяльник, например), а во второй измеряем щупами мультиметра напряжение.

Проверка на разобранном регуляторе выглядит следующим образом.
Проверка на разобранном регуляторе

Здесь потенциометр установлен на максимальное сопротивление. Напряжение на выходе регулятора из 230 В снизилось до 59 В. Справа от вольтметра другой мультиметр, включенный на измерение температуры. Его датчик (термопара) прикладывается к жалу паяльника. Как видно по фото, при подаче на 80-ваттный паяльник всего 59 В максимальная температура его жала составила примерно 200 °C. Этого вполне достаточно, чтобы паять при помощи припоя ПОС-60. Для пайки более тугоплавких привоев напряжение следует повысить, и жало разогреется до большей температуры.

Минимальный порог напряжения на выходе можно снизить еще больше. Для этого надо заменить резистор RV1, установив вместо 250-килоомного, например, на 500 кОм. В результате мы сможем еще больше ограничить ток через конденсатор, он будет заряжаться еще медленнее, динистор будет открываться еще позже, а симистор будет в открытом состоянии еще меньший промежуток времени. Однако это может привести к нестабильной работе регулятора, что потребует усложнения схемы путем добавки в нее еще одного конденсатора.
максимальное напряжение

А это уже максимальное напряжение, которое получается на выходе нашего регулятора. Температура на кончике жала паяльника более 300 градусов (грелся еще, но не стал мучить термопару). Когда этот паяльник включен в розетку 230 В напрямую – он раскаляется и до 400 градусов, что никуда не годится.

Максимальное напряжение на выходе регулятора можно повысить. Для этого надо уменьшить сопротивление резистора R1, заменив его на другой. При этом следует помнить, что через него потечет больший ток, и на нем будет выделяться больше тепла. Соответственно, если взять резистор R1 сопротивлением 5-10 кОм, то его рассеиваемая мощность должна быть уже не 1 Вт, а 2Вт.

В данном случае это не нужно, так как и при 185 вольтах жало перегревается очень сильно.
При подключении к такому регулятору паяльника, если прислушаться, то можно различить тихое жужжание. Это нормально, и паяльнику никак не навредит.

А вот если подключить к нашему регулятору лампу накаливания, то вместо жужжания мы увидим мерцание. Чем меньше будет напряжение и яркость лампы, тем мерцания станут более заметными. Для лампы это не вредно, а вот для нашего зрения – еще как. Потому использовать данную схему в качестве диммера для ламп не стоит. Для этого есть другие схемы, ненамного сложнее этой.

Завершение

В завершение не лишним будет напомнить о нескольких вещах. Во-первых, соблюдайте осторожность при тестировании регулятора. Там высокое напряжение, способное если не убить человека, то привести к ожогам и болезненным ощущениям. Во-вторых, будьте внимательны при подборе симистора из аналогов. Учитывайте мощность нагрузки, ток и вольтаж. В-третьих, при изготовлении регуляторов по этой схеме для более мощной нагрузки от навесного монтажа стоит отказаться. Детали надо запаять на плате, и вынести ее в отдельный корпус.

Источник: knigaelektrika.ru


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.