Антенна квадрат


В 1959 году в №4 журнала «Радио» вышла эпохальная статья энтузиаста дальнего приема телевидения Сергей Кузьмича Сотникова о применении антенн «двойной и тройной квадрат» для дальнего приёма телевидения на МВ (а позже и на ДМВ).

Заявленные феноменальные характеристики 10-12 dBi для двойного квадрата и 16-17 dBi для тройного квадрата взбудоражили умы советского радиолюбительского сообщества и на многие десятилетия предопределили огромный успех таких антенн на МВ и ДМВ: описания этих антенн кочевали из книги в книгу, из журнала в журнал. Повторили их тысячи советских граждан.
Хотя эти характеристики очень сильно завышены, они всё же базировались на публикациях авторитетных исследователей: Сэм Лесли (W5DQV, публикация 1955 года), Дика Бирда (G4ZU), Ротхаммеля (со ссылкой на Лесли и Бирда).

В 1962 году Владимир Павлович Шейко-Введенский (UB5CI) опубликовал в издательстве ДОСААФ книгу «Антенны любительских радиостанций» где тоже есть упоминания 13 dBi от двойного квадрата.


Большое обилие авторитетных источников определило, что в корне неверные выводы Сотникова пользуются популярностью даже в 2018 году.

Попробуем разобраться, где здесь правда граничит с мистификацией

В книге Ротхаммеля (перевод Кренкеля 1967 года) рассмотрены КВ антенны диапазона 20, 15 и 10 метров (14, 21 и 30 МГц).

Со ссылкой на радиолюбителей Сэма Лесли (Оклахома, W5DQV, публикация результатов обширных экспериментов с квадратами 1955 года), и Дика Бирда (G4ZU, Англия) утверждается, что антенны двойной квадрат на этих диапазонах имеют направленность от 10 до 13 dBi (от 8 до 11 dBd)

Симуляция в 4NEC2 с землей (режим реальной земли Зоммерфельда-Нортона) полностью подтверждает эти наблюдения: с проводимостью земли «moderate» можно получить 12.4 dBi, а с «perfect conductor» 13.8 dBi при высоте подвеса антенны 1λ.

Следует отметить, что в опытах Лесли и Бирда измерение dBd производилось не относительно реально построенного диполя, а измерением напряженности поля на некотором расстоянии, при известной мощности в антенне TX и сравнением измеренной напряженности с расчетной по формуле Фрииса.

Дело в том, что обычный диполь Герца, который имеет 2.13 dBi, при высоте подвеса 1λ на КВ формирует двулепестковую ДН с максимумом 8.2 dBi. Т.е. сам диполь за счет земли имеет преимущество над собой 6.1 dBd

Измерения Лесли и Бирда приведены относительно мнимого диполя 2.13 dBi, а не переключением поочередно антенны «двойной квадрат» и диполь.

Практически идентичную «двойному квадрату» диаграмму направленности имеет и 2-элементный волновой канал (рефлектор + вибратор): 11.8 dBi при высоте подвеса антенны 1λ с проводимостью земли «moderate». Форма основного и 3 боковых лепестков почти идентична ДН двойного квадрата.


image

image

Так как на КВ не бывает антенн в свободном пространстве, методика и полученные данные полностью релевантные и имеют практическое применение. Измерение этих антенн в свободном пространстве на КВ выполнить невозможно.

Моделирование же в 4NEC2 дает 7.73 dBi для двойного квадрата и 6.95 dBi для 2-элементного волнового канала.

image
image

В 1962 году в издательстве ДОСААФ радиолюбитель из Харькова Владимир Павлович Шейко-Введенский (UB5CI) публикует книгу «Антенны любительских радиостанций». В этой антенны «двойной квадрат» описаны в главе «КВ антенны». Шейко дает совершенно правильное описание принципа работы — «система из двух противофазно возбуждаемых четвертьволновых горизонтальных излучателей».

Приведены размеры и способы питания для диапазонов 20, 15 и 10 метров (14, 21 и 30 МГц).


В главе «УКВ антенны» Шейко упоминает такие антенны, хотя и не рекомендует их. Об направленных свойствах Шейко говорит: «известны следующие данные об усилении рамочных антенн: двойной квадрат — 9-11 дБ (8-13 раз), тройной квадрат 14-15 дБ (25-32 раза).

Если эти данные приведены для свободного пространства, то они противоречат данным в предыдущей главе о КВ антеннах, ведь с землёй будет значительно больше. Если эти данные приведены с учетом земли (экстраполируя направленность на КВ) — то на УКВ земля не работает как бесконечный плоский проводник, о чем детально написано в книге Гончаренко „Глава 12.1.2 Земля на УКВ“

Таким же путём как Шейко, тремя годами ранее в 1959 году пошел энтузиаст Сергей Сотников.

Чтобы как-то объяснить невероятную направленность такой простой антенны, Сотников выдвинул гипотезу, что у рамочного вибратора 4 рабочих элемента и она эквивалентна 2-этажной ФАР из 2-элементных волновых каналов.

Но 2-этажная ФАР возбуждается синфазно — на каждом этаже направление токов одинаковое. В рамочной же антенне, на разных этажах токи текут противофазно, это описано и в книге Ротхаммеля и Шейко, и следует из простых умозаключений — длина горизонтальной и вертикальной части каждого плеча λ/2, поэтому на верхнем этаже ток течет в противофазе.

Рамочный вибратор с периметром 1λ имеет близкую к изотропной направленность, с небольшим усилением перпендикулярно плоскости и небольшим ослаблением в стороны. В зависимости от формы такой рамки существенно меняется её волновое сопротивление и очень незначительно меняется направленность.


Если рамка максимально широкая и имеет минимальную высоту — получаем полуволной петлевой вибратор Пистолькорса. Его сопротивление максимально возможное и близко к 300 Ом, а точное значение зависит от диаметров верхней и нижней труб. Направленность равна 2.13 dBi, как и у разрезного диполя Герца.

При уменьшении ширины петли и увеличении высоты — сопротивление Ra падает, а форма ДН изменяется очень незначительно. Если ширина стремится к нулю, а высота к λ/2 мы получаем линию передачи длиной λ/2 короткозамкнутую на конце. Ra такой линии равно 0.

В зависимости от соотношения высоты/ширины и формы рамки — можно получать Ra от 0 до 300 Ом. При квадратной рамке с длиной сторон λ/4, сопротивление около 135-140 Ом, а ДН имеет максимумы вперед/назад по 3.48 dBi (1.35 dBd). Возможны и любые другие формы — круглая рамка, треугольная, „гантеля“, „парашют“ и даже неправильные формы.

image

Электрических преимуществ той или иной формы 1λ рамки почти нет. Рамка с меньшей шириной имеет конструктивное преимущество — она более механически прочная при меньшем сечении проводника чем вибратор Пистолькорса. На КВ возможно изготовить квадраты из тонкого гибкого провода, натянув их на крестообразные распорки. Именно механические преимущества и дешевизна определили популярность квадратов у коротковолников по сравению с волновыми каналами, которые имеют весьма схожие электрические характеристики, но требуют мощных труб + траверсу + растяжки для поддержания длинных труб.


Кроме многократно завышенных данных о направленности квадратов на УКВ, Сотников приводит неправильные данные как по размерах (очень большой промах по резонансу) так и по сопротивлению излучения и согласованию.

В размерах приведенных для 12-го канала МВ (222-230 МГц) из прутка 6 мм, резонанс наступает на частоте 242 МГц (HFSS) и 245 МГц (4NEC2). Ra=150 Ом и 167 Ом соответственно.
Для подключения такой антенны к линии передачи 75 Ом необходимо изготовить симметрирующе-согласующее устройство (ССУ, балун) 2:1. При подключении через балун 1:1 даже на резонансной частоте КСВ не может быть меньше 2. На частотах ниже резонансной резко падает Ra и растет отрицательная (ёмкостная) реактивность.

На частоте 222 МГц КСВ75=6.8 (NEC2) или КСВ75=8 (HFSS).

Ку на резонансной частоте 7.19 dBi (HFSS) и 6.67 dBi (NEC2). Форма главного и боковых лепестков в разных программах — почти идентичная.

image
image
image

Результаты симуляции по размерах для 12-го канала МВ в HFSS и 4NEC2

Антенна квадрат

Антенна квадрат
Антенна квадрат
Антенна квадрат
Антенна квадрат
Антенна квадрат Антенна квадрат Антенна квадрат
Антенна квадрат

Выводы

  1. Рамочный вибратор с периметром 1λ любой формы формирует близкую к изотропной диаграмму направленности. Есть небольшое усиление перпендикулярно плоскости рамки — для полуволновой петли равное 2.13 dBi, а для квадратной рамки около 3.5 dBi.
  2. При добавлении рефлектора к рамке её направленность можно увеличить до 6.95 dBi для 2-элементного волнового канала или до 7.73 dBi для двойного квадрата.
  3. На частотах ниже 50 МГц размещение любой антенны на небольшой высоте над землёй (в единицы лямбд) очень существено изменяет результирующую ДН. 2.13 dBi диполь превращается в 8.2 dBi, 6.95 dBi волновой канал превращается в 11.8 dBi, 7.73 dBi двойной квадрат превращается в 12.4 dBi.
  4. Данные по направленности описанные у Лесли, Бирда, Ротхаммеля и Шейко — относятся к низкоподвешенным над землёй антеннам, к которым относятся практически все КВ антенны.
  5. Сергей Сотников экстраполировал производительность КВ антенн двойной квадрат на УКВ, почему этого делать нельзя — написано в „Главе 12.1.2 Земля на УКВ“ книги Гончаренко.

  6. Чтобы обосновать такую огромную направленность квадратов — Сотников кардинально переписал принцип работы квадрата, сравнив его с 2-этажной ФАР из полуволновых диполей и волновых каналов.
  7. Реальная направленность антенн двойной и тройной квадрат незначительно (менее 1 dB) превосходит направленность 2 и 3-элементных волновых каналов.
  8. Волновое сопротивление двойного квадрата (с разносом 0.15λ) близко к 150 Ом. Для работы на 75 Ом необходимо ССУ 2:1, а для 50 Ом — ССУ 3:1. При работе через ССУ 1:1 КСВ не может быть <2 на резонансной частоте.
  9. Размеры антенн приведенные Сотниковым рассчитаны со значительным промахом по резонансу и по минимуму КСВ. Так антенна на диапазон 222-230 МГц имеет резонанс примерно на 242-245 МГц, а на своём расчетном диапазоне КСВ75 превышает 7-8.
  10. Если отбросить завышенные оценки 10-11 dBi, антенна может быть вполне рабочая (при решении вопроса соглсования), 6.7 dBi на VHF для телевидения вполне приличное усиление.
  11. Направленность двойного квадрата не соответствует 5-элементному волновому каналу. Выпускавшая промышленно антенна Уда-Яги на 6-12 канал (2-трубный рефлектор, петлевой вибратор, 4 директора) при длине 1.35 метра давала усиление от 8.6 dBi на 174 МГц до 10.9 dBi на 230 МГц и простое согласование на 75 Ом. Узкополосная (одноканальная) Уда-Яги при равной длине или равном количестве элементов — будет иметь ещё выше усиление.

Тройной квадрат на ДМВ ТВ (DVB-T2)

По просьбе пользователя REPISOT проанализируем возможность применения антенн квадрат для дециметрового диапазона телевизионного вещания.

Промышленно такая антенна производится под маркой „Сигнал 3.0“. Заявленный диапазон по КСВ<1.5 равен 470-862 МГц, усиление до 14 dB (16 dBi??)
Антенна квадрат

Проведем упрощенную симуляцию в HFSS (без пластиковых проставок и без закругления углов, это немного сдвинет резонансную частоту, но точное значние нам сейчас не интересно). Директорная рамка имеет разрыв 1 мм.

Антенна квадрат
Антенна квадрат
Антенна квадрат
Антенна квадрат

Как и ожидалось, антенна имеет единственный резонанс (примерно на 626 МГц), Ra=150 Ом. При питании через ССУ 2:1 на кабель 75 Ом можно получить КСВ=1 на этом канале (примерно 40-ый канал), а КСВ<2 получится в диапазоне 562-737 МГц.
Снизу как и все квадраты, реактивность набирается очень быстро, а Ra падает тоже очень быстро. КСВ150>6 уже при 535 МГц, а на 470 МГц КСВ150=35
Направленность на резонансной частоте 6.88 dBi, F/B=12.77 dB

Изготовить ССУ 2:1 на ДМВ диапазон крайне сложно, поэтому производитель даже не пытался.


Антенна комплектуется печатным эквивалентом полуволновой петли, которая работает как трансформатор 4:1, но только когда электрическая длина петли L/2. Такое ССУ по определению узкополосное (одноканальное). При нагрузке на 75 Ом, входное сопротивление такого ССУ 300 Ом. Но производитель укомплектовал антенну кабелем 50 Ом (хотя телевизоры и тюнеры все 75 Ом). Возможно производитель посчитал что 200 ближе к 150 чем 300, и для уменьшения отражения на границе антенна<->кабель пожертвовал дополнительным отражением на границе кабель<->телевизор.

При нагрузке 300 Ом (платы симметризации или усилители типа SWA/PAE/ALN) антенна имеет КСВ около 2 в диапазоне 616-750 МГц.

При нагрузке 75 Ом (четвертьволновый трансформатор, как в схемах Сотникова) антенна сильно рассогласована везде, но в узком участке 577-608 МГц КСВ опускается до 2.

Направленность излучения вперёд на уровне 6.7 dBi антенна сохраняет от 540 до 860 МГц.
На частоте 500 МГц F/B падает до 0 (и вперёд и назад излучается по 5.2 dBi)

Такая антенна по сложности изготовления и по стоимости превышает 3-элементный волновой канал „Волна-1“ розничной стоимостью $3.5
image
А по электрическим характеристиками существенно проигрывает ей
image

image
image

Источник: habr.com

Антенна квадрат

Одним из видов антенн является антенна в форме квадрата.  В некоторых странах она пользуется популярностью. В России, такая антенна  в один элемент  не очень распространен. То ли из-за нехватки информации, в журналах наших радио и радиолюбительских источниках, то ли по другим причинам.

Давайте  рассмотрим его применение на радиолюбительские диапазоны, на 80-ку к примеру.

Для 80 метрового диапазона возьмем провод полевой длиной 84 метра. Разместим все четыре угла на высоте 16 метров от земли. На резонансной частоте будет примерно 120 ом активного волнового сопротивления. Полоса пропускания по уровню ксв=2, примерно составит 230 килогерц. Диаграмма круговая в азимутальной плоскости, по углу места в зенит. Усиление примерно будет 8,3 dbi. Для согласования с 50-омным кабелем потребуется четвертьволновый трансформатор из коаксила 75 ом. Точка подключения в середине из одной стороны. При подключении в одном из углов, характеристики почти не меняются.

Если этот квадрат опустить до высоты 9 метров от земли. Активное сопротивление на резонансной частоте   составит около 50 ом, и можно будет напрямую запитывать 50-омным кабелем. При этом немного вырастет усиление, и будет около 9 dbi. Полоса пропускания заметно сузится, и будет всего 90 кгц. Что не есть хорошо.

Использовать такую конструкцию антенны на радиостанции имеет смысл при проведении только  местных радио связей – до 800 километров, причем запитка полотна в углу возможно будет предпочтительнее.

Давайте теперь полотно антенны разместим не параллельно , а вертикально относительно земли. Периметр увеличим до 85 метров, чтобы резонансная частота была в середине диапазона 3 650 килогерц. Нижняя сторона квадрата на высоте примерно 2 метра от земли. Поляризация горизонтальная – точка подключения в середине нижней стороны.

Что будет в таком варианте – полоса пропускания  140 килогерц. Мало, а весь 80-метровый диапазон перекрывает очень мало, всего несколько антенн по полосе пропускания.

Усиление меньше 7 dbi. Диаграмма круговая, да и все антенны из одного элемента на малой высоте подвеса имеют круговую  диаграмму, как ни крути, и не наклоняй.

Зато угол излучения максимальный стал  65 градусов. При таком угле связи можно проводить как в ближней зоне, так и до 3-5 тысяч километров с одинаковым успехом. Здесь можно даже картинку показать.

Антенна квадрат на 80 метров

Мы рассматривали горизонтальную поляризацию, давайте попробуем вертикальную. Для этого точку питания перенесем в одну из середин вертикальной стороны. О! Чудо. Полоса пропускания составила 330 килогерц, что очень хорошо, при периметре 83,4 метра. Угол излучения максимальный  16 градусов. При таком угле все DXы на 80ке наши будут. То есть можно будет хорошо и просто проводить связи от 5 тысяч километров до антипода (16 т.км). Супер!

Антенна квадрат на 80 метров вертикальной поляризации

Сопротивление в этом случае будет 200 ом, и мы можем применить трансформатор ¼ по сопротивлению, и все будет хорошо.

Рассматривая, пробуя, анализируя, любой радиолюбитель сможет выбрать, подобрать себе антенну квадрат. Она хорошая.

Источник: ra9da.ru

Что нужно для изготовления антенны двойной квадрат

Сегодня на смену аналоговому телевидению пришло цифровое ТВ. Благодаря новым технологиям люди получили возможность смотреть передачи в отличном качестве, причем существенно увеличилось количество доступных каналов. Для подключения к цифровому ТВ достаточно иметь хороший телевизор, дешифратор и комплектующие, для установки. Чтобы получать на свое оборудование видеосигнал, необходимо иметь дециметровую антенну двойной квадрат. Ее нет смысла покупать, так как, имея под рукой минимум материалов, можно за считанные минуты изготовить устройство самостоятельно.

Антенна двойной квадрат по внешнему виду напоминает пару соединенных между собой ромбов. Несмотря на примитивность конструкции, она будет довольно хорошо принимать сигнал. Для ее изготовления можно задействовать любой материал, способный проводить ток, например, уголок, металлическую полосу, проволоку, пруты, трубки. Чтобы максимально усилить сигнал следует расположить за парными квадратами отражатель, выполненный, например, из фольги.

Если принято решение своими руками провести все работы, то надо подготовить для такой антенны такие комплектующие:

  1. Wi-Fi адаптер. Кусок кабеля (высокочастотного) предназначенного для подключения Wi-Fi. Его сопротивление должно быть в пределах 75Ом или 50Ом.
  2. Проволоку, выполненную из меди, размер сечения которой варьируется в диапазоне от 1,5мм до 3мм. Она хорошо гнется, поэтому будет задействоваться для проводки. Если не удастся найти медную проволоку, можно использовать стальной материал, сечение которого варьируется в диапазоне от 2мм до 5мм.
  3. Листок текстолита (фольгированного), размером 100мм х 120мм. Его можно заменить листком гетинакса, такого же размера.
  4. Штекер.
  5. Сырье для распорок: деревянные планки, фибергласс, дюралевые трубки.
  6. Инструменты (молоток, паяльник, наждачная бумага и т. д.).
  7. Шест для фиксации антенны на стене дома либо на крыше.
  8. Крепежные элементы.

В разрыв активного элемента, расположенный снизу, осуществляется подключение кабеля (коаксикального), волновое сопротивление которого составляет 75ОМ. Разрыв рефлектора представляет собой двухпроводную открытую линию, которая продолжает линию рамки. Между проводами присутствует расстояние 150мм – 200мм, а также скользящая по линии перемычка, предназначенная для регулировки.

Многие специалисты рекомендуют для этих целей применять оснащенные по краям изоляторами дюралевые трубы. В этом случае вертикальные распорки выполняются из цельного сырья, а расположенные горизонтально элементы разделяются посредством изоляционных вставок. Для них можно применить армированный фторопласт, стеклотекстолит и т. д. Главное, выполнить основное условие. Каждая из четырех распорок, расположенных горизонтально, должна состоять из изолированных элементов, равных по размерам.

Надо ли делать расчеты

Если человек самостоятельно решил изготовить антенну двойной квадрат для получения цифрового сигнала, ему нет надобности исчислять длину волны. Специалисты рекомендуют людям, для принятия устройствами максимального количества сигналов, делать конструкции более широкополосными.

В том случае, когда мастер стремится изготовить антенну по всем правилам, он может выполнить расчеты.

Для этого ему потребуются определенные данные:

  1. Узнать размер стороны квадрата удастся таким образом. Определяется волна, на которой осуществляется трансляция сигнала. Этот показатель делится на 4.
  2. Узнать, какое в идеале расстояние должно быть между 2 частями устройства можно таким образом. Внутренние элементы — более короткие, а наружные стороны ромбов – немного длиннее.

Также мастера могут задействовать в процессе изготовления антенн двойной квадрат уже готовые расчеты:

Наименование элементов (мм) Диапазон 10м  Диапазон 15м Диапазон  20м
Диагональ (А) рамок 3750мм 5050мм 7600мм
Полная длина (b) двухпроводной линии (регулировочной) рефлектора 650мм 850мм 1300мм
Расстояние (L) между рамками 1330мм 1800мм 2700мм

Антенна двойной квадрат изготовление

После того как мастер узнал, какие размеры антенны двойной квадрат надо использовать, он может приступать к ее изготовлению.

Этот процесс предусматривает несколько этапов:

  1. В первую очередь придется осторожно, с двух сторон зачистить кабель. Тот конец, который будет крепиться к самой конструкции, следует очистить таким образом, чтобы провод выходил из изоляции примерно на 2см. Если оголенный кончик получился большего размера, то излишек следует отрезать.
  2. Фольга, которая будет задействоваться в качестве отражающего экрана, и оплетка должна быть скручена в жгут.
  3. В итоге у мастера получится два проводника, которые необходимо залудить.
  4. Берется второй край кабеля (1см) и к нему припаивается штекер. Те места, в которых будет осуществляться пайка, необходимо обработать посредством растворителя либо спирта. После этого нужно выполнить зачистку надфилем или наждачной бумагой. На подготовленный кабель надевается штекер пластиковой частью, делается пайка.
  5. На следующем этапе придется припаять моножилу к выходу штекера (центральному), а многожильную скрутку к боковому.
  6. Вокруг изоляции обжимается захват. Это делается и при изготовлении антенны тройной квадрат.
  7. Накручивается наконечник, выполненный из пластика. Полости специалисты рекомендуют залить герметиком, не проводящим ток либо клеем.
  8. Быстро собирается конструкция штекера, пока не успела застыть клеящая смесь (ее излишки убираются).
  9. Осуществляется соединение своими руками двух элементов: рамки с кабелем. Ввиду того, что в процессе изготовления антенны не делалась привязка к конкретному каналу, выполнять припаивание кабеля нужно к средней точке рамки. В итоге удастся увеличить широкополосность конструкции, которая станет принимать больше каналов.
  10. Второй подготовленный кончик кабеля необходимо припаять по центру к двум сторонам, которые предварительно были зачищены и залужены.
  11. На данном этапе завершен процесс изготовления конструкции активной рамки, теперь переходим к проверке и установке антенны.

Для этого следует по такому же принципу выявить частоты рассчитать, основные параметры. Для дмв антенны тройной квадрат потребуется больше расходных материалов, так как потребуется создать дополнительную рамку – директор, имеющий меньшие размеры.

Важно! Чтобы правильно выполнить расчет антенны тройной квадрат для цифрового телевидения, можно задействовать онлайн калькулятор. В него необходимо внести такие данные: частоту, тип провода, Мгц. После нажатия на кнопку «результат» программа автоматически проведет расчеты и выведет в специальном окошке цифры.

Испытание антенны двойной квадрат

После того как была создана конструкция антенны ее следует испытать. В обязательном порядке мастер должен выполнить настройку излучателя, благодаря чему удастся смотреть передачи в максимально высоком для таких условий качестве.

При проведении испытаний следует учесть несколько нюансов:

  • Диаграмма направленности конструкции будет косить при отсутствии устройства, обеспечивающего симметрию.
  • Если стороны квадрата возбуждаются синфазно, значит поляризация эл. поля к плоскости конструкции проводится перпендикулярно.
  • Компенсировать реактивную составляющую антенны (после настройки антенны) можно при настройке мостика (симметрирующего), удлиняя или укорачивая этот элемент.
  • Если сопротивление антенны под кабель будет более высоким, то это положительно отразится на коэффициенте усиления. Именно поэтому для конструкции следует задействовать коаксиальный кабель не 50Ом, а 75Ом.
  • Антенну следует помещать в защитный корпус, который предотвратить заливание водой и налипание снега, обледенение. Для этих целей можно задействовать 5л пластиковую баклажку.
  • В процессе испытаний не должно находиться возле антенны второй квадрат ноутбука или ПК с подключениями wi-fi. Как только конструкция будет включена в ТВ оборудование, можно посредством компьютерной техники ловить эти сигналы. Наиболее качественные wi-fi точки будут обнаружены при установке антенны на крыше.
  • Проводится настройка тюнера и проверяется качество видео и звука.

Заключение и особенности антенны двойной квадрат

Такая конструкция имеет направленное действие. Если пользователь будет проворачивать ее на 360 градусов, то сможет поймать разнообразные сигналы. Владельцы загородных домов и дач, которые не используют отражающие экраны, должны знать, что в этом случае качество сигнала снизится минимум на 30%. Его функции может заменить шляпа спутниковой тарелки. На место расположения головки следует прикрепить конструкцию двойной квадрат. Благодаря таким манипуляциям удастся без отражающего экрана максимально усилить цифровые сигналы.

Источник: prosmartv.ru

Расчет антенны

Узнаем свои частоты обоих пакетов DVB-T2 в своей местности. Для этого можно перейти на сайт Интерактивной карты ЦЭТВ и посмотреть какая вышка к вам ближе, один или оба пакета каналов вещает и на каких частотах. У нас в пригороде Санкт-Петербурга это 586 МГц и 666 МГц.

Теперь зная частоты пакетов нам нужно рассчитать длину стороны квадрата нашей DVB-T2 антенны. Она равна четверти длины волны.

Можно посчитать по формуле. Она довольно простая:

формула рассчета длины волныТо есть для наших 586МГц: 300000000/586000000=0,51 метр. Четверть длины волны соответственно 0,51/4=0,127 метра или 12,7 см.

Для второго мультиплекса 666МГц рассчитываем аналогично и получаем 11,2 см.

Кому совсем лень считать по формуле могут воспользоваться автоматическим калькулятором для расчета антенны биквадрат Харченко по этой ссылке.

Нас интересует L1. H и B для антенны с рефлектором (решетка), усиливает сигнал. Я делал без него.

Теперь если мы делаем антенну на два пакета каналов DVB-T2, определяем среднюю длину. То бишь складываем наши длины и делим пополам.

L1=(12,7+11,2)/2=11,95 округляем до 12 см.

Сборка антенны для DVB-T2

Тут должно быть все понятно. Берем наш отрезок ВВГ или что там у вас. Для определения примерной длины проволоки необходимой для сборки антенны, можно L1*8 и накинуть пару сантиметров. 12*8+2=98 см понадобилось для изготовления моей антенны.

Если у вас толстая проволока 4-5 мм диаметром то скорее всего без тисков будет не обойтись. Мне же хватило плоскогубцев.

Зачищаем провод от изоляции. Затем плоскогубцами гнем биквадрат. Смотрим фотки. Все углы под 90 градусов.

антенна dvb-t2 своими руками

Потом припаиваем 75 Омный телевизионный кабель. Жилу паяем к одному квадрату, Оплетку к другому.

биквадрат своими руками

Сигнал на высоких частотах распространяется по поверхности проводника, поэтому антенну после сборки лучше покрасить. Я использовал остатки акриловой фасадной краски. Место пайки лучше залить термоклеем или герметиком.

Провод от места пайки крепим стяжками (ремешками) вдоль сторон квадрата, как на фото. Это обязательное действие является согласованием антенны.

Источник: moyteremok.ru


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.