Принцип действия антенны


Источник: www.wifiantenna.org.ua

image

Помимо свойств радиоволн, необходимо тщательно подбирать антенны, для достижения максимальных показателей при приеме/передаче сигнала.
Давайте ближе познакомимся с различными типами антенн и их предназначением.

Антенны — преобразуют энергию высокочастотного колебания от передатчика в электромагнитную волну, способную распространяться в пространстве. Или в случае приема, производит обратное преобразование — электромагнитную волну, в ВЧ колебания.

Диаграмма направленности — графическое представление коэффициента усиления антенны, в зависимости от ориентации антенны в пространстве.

Антенны

Симметричный вибратор

image


В простейшем случае состоит из двух токопроводящих отрезков, каждый из которых равен 1/4 длины волны.

Широко применяется для приема телевизионных передач, как самостоятельно, так и в составе комбинированных антенн.
Так, к примеру, если диапазон метровых волн телепередач проходит через отметку 200 МГц, то длина волны будет равна 1,5 м.
Каждый отрезок симметричного вибратора будет равен 0,375 метра.

Диаграмма направленности симметричного вибратора

image

В идеальных условиях, диаграмма направленности горизонтальной плоскости, представляет собой вытянутую восьмерку, расположенную перпендикулярно антенне. В вертикальной плоскости, диаграмма представляет собой окружность.
В реальных условиях, на горизонтальной диаграмме присутствуют четыре небольших лепестка, расположенных под углом 90 градусов друг к другу.
Из диаграммы можем сделать вывод о том, как располагать антенну, для достижения максимального усиления.

В случае не правильно подобранной длины вибратора, диаграмма направленности примет следующий вид:

image

Основное применение, в диапазонах коротких, метровых и дециметровых волн.

Несимметричный вибратор

image

Или попросту штыревая антенна, представляет из себя «половину» симметричного вибратора, установленного вертикально.
В качестве длины вибратора, применяют 1, 1/2 или 1/4 длины волны.

Диаграмма направленности следующая:


image

Представляет собой рассеченную вдоль «восьмерку». За счет того, что вторая половина «восьмерки» поглощается землей, коэффициент направленного действия у несимметричного вибратора в два раза больше, чем у симметричного, за счет того, что вся мощность излучается в более узком направлении.
Основное применение, в диапазонах ДВ, КВ, СВ, активно устанавливаются в качестве антенн на транспорте.

Наклонная V-образная

image

Конструкция не жесткая, собирается путем растягивания токопроводящих элемементов на кольях.
Имеет смещение диаграммы направленности в стороны противоположную острию буквы V

image

Применяется для связи в КВ диапазоне. Является штатной антенной военных радиостанций.

Антенна бегущей волны

Также имеет название — антенна наклонный луч.

image

Представляет из себя наклонную растяжку, длина которой в несколько раз больше длины волны. Высота подвеса антенны от 1 до 5 метров, в зависимости от диапазона работы.
Диаграмма направленности имеет ярко выраженный направленный лепесток, что говорит о хорошем усилении антенны.


image

Широко применяется в военных радиостанциях в КВ диапазоне.
В развернутом и свернутом состоянии выглядит так:

image

image

Антенна волновой канал

image
Здесь: 1 — фидер, 2 — рефлектор, 3 — директоры, 4 — активный вибратор.

Антенна с параллельными вибраторами и директорами, близкими к 0,5 длины волны, расположенными вдоль линии максимального излучения. Вибратор — активный, к нему подводятся ВЧ колебания, в директорах, наводятся ВЧ токи за счет поглощения ЭМ волны. Расстояние между рифлектором и директорами подпирается таким образом, чтобы при совпадении фаз ВЧ токов образовывался эффект бегущей волны.

За счет такой конструкции, антенна имеет явную направленность:

image

Рамочная антенна

image

Направленность — двулепестковая


image

Применяется для приема ТВ программ дециметрового диапазона.

Как разновидность — рамочная антенна с рефлектором:

image

Логопериодическая антенна

Свойства усиления большинства антенн сильно меняются в зависимости от длины волны. Одной из антенн, с постоянной диаграммой направленности на разных частотах, является ЛПА.

image

Отношение максимальной к минимальной длине волн для таких антенн превышает 10 — это довольно высокий коэффициент.
Такой эффект достигается применением разных по длине вибраторов, закрепленных на параллельных несущих.
Диаграмма направленности следующая:

image

Активно применяется в сотовой связи при строительстве репитеров, используя способность антенн, принимать сигналы сразу в нескольких частотных диапазонах: 900, 1800 и 2100 МГц.

image

Поляризация

Поляризация — это направленность вектора электрической составляющей электромагнитной волны в пространстве.
Различают: вертикальную, горизонтальную и круговую поляризацию.


image
image

Поляризация зависит от типа антенны и ее расположения.
К примеру, вертикально расположенный несимметричный вибратор, дает вертикальную поляризацию, а горизонтально расположенный — горизонтальную.

Антенны горизонтальной поляризации дают больший эффект, т.к. природные и индустриальные помехи, имеют в основном вертикальную поляризацию.
Горизонтально поляризованные волны, отражаются от препятствий менее интенсивно, чем вертикально.
При распространении вертикально поляризованных волн, земная поверхность поглощает на 25% меньше их энергии.

При прохождении ионосферы, происходит вращение плоскости поляризации, как следствие, на приемной стороне не совпадает вектор поляризации и КПД приемной части падает. Для решения проблемы, применяют круговую поляризацию.

Все эти факторы факторы следует учитывать при расчете радиолиний с максимальной эффективностью.

PS:

Данная статья обрисовывает лишь небольшую часть антенн и не претендует на замену учебнику антенно-фидерных устройств.

Источник: habr.com

Радиоволны беспроводной сети

Когда возникает потребность в беспроводной связи, необходима антенна. Она имеет возможность посылать или принимать электромагнитные волны для связи, где невозможно установить проводную систему.

Антенна является ключевым элементом этой беспроводной технологии. Радиоволны легко создаются и широко используются как для внутренней, так и для наружной связи из-за способности проходить через здания и путешествовать на большие расстояния.

Ключевые особенности передающих антенн:


  1. Поскольку радиопередача носит всенаправленный характер, необходимость физического согласования передатчика и приемника не требуется.
  2. Частота радиоволн определяет многие характеристики передачи.
  3. На низких частотах волны могут легко проходить через препятствия. Однако их мощность падает с обратным квадратом относительно расстояния.
  4. Более высокие частоты волн более склонны к поглощению, и они отражаются на препятствиях. Из-за большой дальности передачи радиоволн помехи между передачами являются проблемой.
  5. В диапазонах VLF, LF и MF распространение волн, также называемых наземными волнами, следует за кривизной Земли.
  6. Максимальные диапазоны пропускания этих волн составляют порядка нескольких сотен километров.
  7. Передающие антенны используются для передач с низкой пропускной способностью, таких как радиопередача с амплитудной модуляцией (AM).
  8. Передачи HF и VHF-диапазона поглощаются атмосферой, расположенной вблизи поверхности Земли. Однако часть излучения, называемая волной неба, распространяется наружу и вверх к ионосфере в верхней атмосфере. Ионосфера содержит ионизированные частицы, образованные излучением Солнца. Эти ионизированные частицы отражают волны неба обратно на Землю.

Распространение волн


  • Распространение прямой видимости. Среди всех способов распространения этот наиболее часто встречающийся. Волна перемещается на минимальное расстояние, которое можно видеть невооруженным глазом. Далее нужно использовать передатчик усилителя, чтобы увеличить сигнал и передать его снова. Такое распространение не будет плавным, если на его пути передачи есть какое-либо препятствие. Эта передача используется для инфракрасных или микроволновых передач.
  • Распространение земной волны от передающей антенны. Распространение волны на грунт происходит по контуру Земли. Такая волна называется прямой волной. Волна иногда изгибается из-за магнитного поля Земли и попадает в приемник. Такую волну можно назвать отраженной волной.
  • Волна, распространяющаяся через земную атмосферу, известна как земная. Прямая волна и отраженная волна вместе дают сигнал на приемной станции. Когда волна достигает приемника, задержка прекращается. Кроме того, сигнал фильтруется во избежание искажения и усиления для четкого вывода. Волны передаются из одного места и где они принимаются многими приемопередающими антеннами.

Система координат измерения антенны

Рассматривая плоские модели, пользователь будет сталкиваться с показателями азимута плоскости и высоты плоскости паттерна. Термин азимут обычно встречается в отношении «горизонта» или «горизонтали», тогда как термин «высота» обычно относится к «вертикали». На рисунке плоскость xy является азимутальной плоскостью.


Диаграмма азимутальной плоскости измеряется, когда измерение выполняется, перемещая всю плоскость xy вокруг испытываемой приемопередающей антенны. Плоскость возвышения — это плоскость, ортогональная плоскости ху, например, плоскость yz. План плоскости возвышенности совершает обход всей плоскости yz вокруг испытываемой антенны.

Образцы (азимуты и диаграммы высоты) часто отображаются как графики в полярных координатах. Это дает пользователю возможность легко визуализировать, как антенна излучает во всех направлениях, как если бы она была уже «нацелена» или смонтирована. Иногда полезно нарисовать диаграммы направленности в декартовых координатах, особенно когда в шаблонах имеется несколько боковых лепестков и где важны уровни боковых лепестков.

Основные характеристики связи

Антенны являются основными компонентами любой электрической цепи, поскольку они обеспечивают взаимосвязь между передатчиком и свободным пространством или между свободным пространством и приемником. Прежде чем говорить о типах антенн, нужно знать их свойства.

Антенный массив — систематическое развертывание антенн, которые работают вместе. Индивидуальные антенны в массиве обычно имеют один и тот же тип и расположены в непосредственной близости, на фиксированном расстоянии друг от друга. Массив позволяет увеличить направленность, управление основными лучами излучения и боковыми пучками.


Все антенны характеризуются пассивным коэффициентом усиления. Пассивное усиление измеряется величиной dBi, которая связана с теоретической изотропной антенной. Считается, что она передает энергию одинаково во всех направлениях, но не существует в природе. Коэффициент усиления идеальной полуволновой дипольной антенны составляет 2,15 дБи.

EIRP, или эквивалентная изотропная излучаемая мощность передающей антенны является мерой максимальной мощности, которую теоретическая изотропная антенна излучала бы в направлении максимального усиления. EIRP учитывает потери от линий электропередач и разъемов и включает в себя фактическое усиление. EIRP позволяет рассчитывать реальную мощность и значения напряженности поля, если известны фактическое усиление и выходная мощность передатчика.

Усиление антенны по направлениям

Оно определяется как отношение коэффициента усиления мощности в заданном направлении к усилению мощности опорной антенны в том же направлении. Стандартной практикой является использование изотропного излучателя в качестве эталонной антенны. При этом изотропный излучатель будет без потерь, излучает свою энергию одинаково во всех направлениях. Это означает, что коэффициент усиления изотропного излучателя равен G = 1 (или 0 ДБ). Обычно принято использовать блок dBi (децибелы относительно изотропного излучателя) для усиления по отношению к изотропному излучателю.


Усиление, выраженное в dBi, вычисляется по следующей формуле: GdBi = 10 * Log (GNumeric / GIsotropic) = 10 * Log (GNumeric).

Иногда в качестве эталона используется теоретический диполь, поэтому для описания коэффициента усиления по отношению к диполю будет использоваться единица dBd (децибелы относительно диполя). Этот блок, как правило, используется, когда речь идет об усилении всенаправленных антенн с более высоким коэффициентом усиления. В этом случае их усиление выше на 2,2 дБи. Поэтому если антенна имеет коэффициент усиления 3 дБн, общий коэффициент усиления будет 5,2 дБи.

Ширина луча 3 ДБ

Такая ширина луча (или ширина луча половинной мощности) антенны обычно определяется для каждой из главных плоскостей. Ширина луча 3 ДБ в каждой плоскости определяется как угол между точками основного лепестка, которые уменьшены от максимального усиления на 3 ДБ. Ширина луча 3 ДБ — угол между двумя синими линиями на полярном участке. В этом примере ширина луча 3 ДБ в этой плоскости составляет около 37 градусов. Антенны с широкой шириной луча обычно имеют низкий коэффициент усиления, а антенны с узкой шириной луча имеют более высокий коэффициент усиления.

Таким образом, антенна, которая направляет большую часть своей энергии в узкий луч, по крайней мере, в одной плоскости, будут иметь более высокий коэффициент усиления. Отношение «вперед-назад» (F/B) используется как показатель достоинства, который пытается описать уровень излучения со спины направленной антенны. В принципе, отношение «вперед-назад» — это отношение пикового усиления в прямом направлении к коэффициенту усиления на 180 градусов позади пика. Разумеется, в масштабе ДБ соотношение «вперед-назад» — это просто разница между пиковым усилением в прямом направлении и коэффициентом усиления на 180 градусов позади пика.

Классификация антенн

Существует множество видов антенн для различных применений, таких как связь, радиолокация, измерения, имитация электромагнитных импульсов (EMP), электромагнитная совместимость (EMC) и т. д. Некоторые из них предназначены для работы на узких полосах частот, в то время как другие предназначены для излучения/принимать импульсы переходного процесса. Показатели характеристик передающих антенн:

  1. Физическая структура антенны.
  2. Диапазоны частот работы.
  3. Режим приложений.

Ниже приведены типы антенн в соответствии с физической структурой:

  • проволочные;
  • апертурные;
  • отражающие;
  • антенны объектива;
  • микрополосковые антенны;
  • массивные антенны.

Ниже приведены типы передающих антенн в зависимости от частоты работы:

  1. Очень низкая частота (VLF).
  2. Низкая частота (LF).
  3. Средняя частота (MF).
  4. Высокая частота (HF).
  5. Очень высокая частота (ОВЧ).
  6. Сверхвысокая частота (УВЧ).
  7. Супер высокая частота (SHF).
  8. Микроволновая волна.
  9. Радиоволна.

Ниже приведены передающие и принимающие антенны в соответствии с режимами применения:

  1. Связь точка-точка.
  2. Приложения для вещания.
  3. Радиолокационная связь.
  4. Спутниковая связь.

Конструктивные особенности

Передающие антенны создают радиочастотное излучение, распространяющееся в пространстве. Приемные антенны выполняют обратный процесс: они получают радиочастотное излучение и преобразуют их в требуемые сигналы ,например, звук, изображение в телевизионных передающих антеннах и мобильном телефоне.

Самый простой тип антенны состоит из двух металлических стержней и известен как диполь. Одним из наиболее распространенных типов является монопольная антенна, состоящая из стержня, расположенного вертикально к большой металлической доске, которая служит в качестве заземленной плоскости. Установка на транспортных средствах обычно является монополем, а металлическая крыша транспортного средства служит в качестве заземления. Устройство передающей антенны, ее форма и размер определяют рабочую частоту и другие характеристики излучения.

Одним из важных атрибутов антенны является ее направленность. В связи между двумя фиксированными целями, как и в связи между двумя фиксированными станциями передачи, или в радиолокационных применениях требуется антенна, чтобы напрямую передавать энергию передачи в приемник. И наоборот, когда передатчик или приемник не является стационарным, как в сотовой связи, требуется ненаправленная система. В таких случаях требуется всенаправленная антенна, которая равномерно принимает все частоты во всех направлениях горизонтальной плоскости, а в вертикальной плоскости излучение неравномерно и очень мало, как у Кв передающей антенны.

Передающие и приемные источники

Передающее устройство — основной источник радиочастотного излучения. Этот тип состоит из проводника, интенсивность которого колеблется со временем и преобразует его в радиочастотное излучение, распространяющееся в пространстве. Приемная антенна — устройство для приема радиочастот (RF). Она выполняет обратную передачу, выполняемую передающей, получает радиочастотное излучение, преобразует его в электрические токи в электрической цепи антенны.

Телевизионные и радиовещательные станции используют передающие антенны для передачи определенных типов сигналов, которые распространяются по воздуху. Эти сигналы обнаруживаются приемными антеннами, которые преобразуют их в сигналы и принимаются соответствующим устройством, например, телевизором, радио, мобильным телефоном.

Радиоприемные и телевизионные приемные антенны предназначены исключительно для приема радиочастотного излучения, и они не производят радиочастотное излучение. Устройства сотовой связи, например, базовые станции, повторители и мобильные телефоны оснащены назначенными передающими и приемными антеннами, которые излучают радиочастотное излучение и обслуживают сети сотовой связи в соответствии с технологиями сетей связи.

Разница между аналоговой и цифровой антенной:

  1. Аналоговая антенна имеет переменный коэффициент усиления и работает в диапазоне 50 км для DVB-T. Чем дальше пользователь находиться от источника сигнала, тем хуже сигнал.
  2. Для приема цифрового ТВ — пользователь получает либо хорошее изображение, либо изображение вообще. Если он находится далеко от источника сигнала, то не получает никакого изображения.
  3. Передающая цифровая антенна имеет встроенные фильтры для снижения шума и улучшения качества изображения.
  4. Аналоговый сигнал передается непосредственно на телевизор, в то время как цифровой необходимо сначала декодировать. Это позволяет исправить ошибки, а также данные как сжатие сигнала для получения дополнительных функций в качестве дополнительных каналов, EPG, Pay TV, интерактивных игр и т. д.

Дипольные передатчики

Дипольные антенны являются наиболее распространенным всенаправленным типом и распространяют радиочастотную (RF) энергию на 360 градусов в горизонтальной плоскости. Эти устройства сконструированы так, чтобы быть резонансными с половиной или четвертью длины волны применяемой частоты. Она может быть такой же простой, как два куска провода, нужной длины, или может быть инкапсулирована.

Диполь используется во многих корпоративных сетях, небольших офисах и для домашних нужд (SOHO). Она имеет типичный импеданс, позволяющий согласовать ее с передатчиком для максимальной передачи мощности. Если антенна и передатчик не совпадают, на линии передачи будут возникать отражения, которые ухудшают сигнал или даже могут повредить передатчик.

Направленный фокус

Направленные антенны фокусируют излучаемую мощность на узкие лучи, обеспечивая значительный выигрыш в этом процессе. Свойства ее также являются взаимными. Характеристики передающей антенны, такие как импеданс и усиление, также применимы к приемной антенне. Вот почему одна и та же антенна может использоваться как для отправки, так и для приема сигнала. Усиление сильно направленной параболической антенны служит для усиления слабого сигнала. Это одна из причин, почему они часто используется для связи на большие расстояния.

Обычно используемой направленной антенной является массив Яги-Уда, называемый Яги. Она была изобретена Шинтаро Уда и его коллегой Хидецугу Яги в 1926 году. Яги-антенна использует несколько элементов для формирования направленного массива. Один управляемый элемент, обычно диполь, распространяет радиочастотную энергию, элементы, расположенные непосредственно перед и за ведомым элементом, повторно излучают радиочастотную энергию по фазе и вне фазы, усиливая и замедляя сигнал соответственно.

Эти элементы называются паразитными элементами. Элемент за ведомым называется отражателем, а элементы перед ведомым устройством называются директорами. Антенны Yagi имеют ширину луча в диапазоне от 30 до 80 градусов и могут обеспечить более чем 10 дБи пассивного усиления.

Параболическая антенна является наиболее знакомым типом направленной антенны. Парабола — симметричная кривая, а параболический отражатель – это поверхность, которая описывает кривую при 360-градусном вращении — тарелке. Параболические антенны используются для междугородных линий связи между зданиями или большими географическими районами.

Полунаправленные секционные излучатели

Патч-антенна представляет собой полунаправленный излучатель с использованием плоской металлической полосы, установленной над землей. Излучение от задней части антенны эффективно обрезается наземной плоскостью, повышая направленность вперед. Этот тип антенны также известен как микрополосковая антенна. Он обычно прямоугольный и заключен в пластиковый корпус. Этот тип антенны может быть изготовлен стандартными методами печатной платы.

Патч-антенна может иметь ширину луча от 30 до 180 градусов и типичный коэффициент усиления 9 ДБ. Секционные антенны — это другой тип полунаправленной антенны. Секторные антенны обеспечивают диаграмму направленности сектора излучения и обычно устанавливаются в массиве. Ширина луча для секторной антенны может составлять от 60 до 180 градусов, причем типичным является 120 градусов. В секционированном массиве антенны монтируются вплотную друг к другу, обеспечивая полный охват на 360 градусов.

Источник: FB.ru

  1. ↑ Устройство — совокупность элементов, то есть составных частей, представляющая единую конструкцию. ГОСТ 2.701-84. Схемы. Виды и типы. Общие требования к выполнению.
  2. ↑ ГОСТ 24375-80. Радиосвязь. Термины и определения. ГОСТ даёт определение: «Антенна — устройство для излучения и приёма радиоволн»
  3. ↑ Традиционно при определении термина «антенна» используют термин «радиоволны» (ГОСТ 24375-80 и др.), подчеркивая тем самым, что антенны применяются в радиочастотном диапазоне. Однако с появлением опытных образцов наноантенн, способных принимать электромагнитное излучение оптического диапазона (инфракрасного и видимого участков спектра), традиционное определение термина «антенна» нуждается в корректировке.
  4. Антенна — статья из Физической энциклопедии
  5. ↑ Дискриминатор — функциональный узел, выполняющий сравнение двух входных сигналов, выходной сигнал которого пропорционален разности этих сигналов
  6. Характеристика направленности антенны — зависимость создаваемой ею напряженности поля от направления (то есть от радиус-вектора точки наблюдения, при фиксированном расстоянии r от антенны). Как правило, используется сферическая система координат (направление задается угломестным и азимутальным углами θ и φ), и характеристика направленности определяется в дальней зоне антенны. Полагая один из углов, задающих направление, постоянным, получают характеристику направленности антенны в той или иной плоскости, например, в азимутальной, горизонтальной или вертикальной. Характеристика направленности антенны — векторная комплексная величина, параметрами которой также являются частота f и расположение антенны относительно системы координат (координаты фазового центра и ориентация антенны). Графическое представление характеристики направленности антенны называют диаграммой направленности антенны: амплитудной или «по мощности», которые могут определяться по модулю или по той или иной компоненте вектора напряженности поля — θ-, φ-, указанной основной или паразитной (кроссполяризационной) компоненте и др.; фазовой; поляризационной. Таким образом, следует различать характеристику направленности и диаграмму направленности антенны.
  7. ↑ слабонаправленная, карандашная, суммарно-разностная, специальной формы и др.
  8. ↑ фиксированная в пространстве или сканирующая (по способу: с механическим, электрическим, частотным и др. сканированием); с постоянной или изменяемой формой (например, адаптируемая).
  9. ↑ Зондирующая электромагнитная волна, встречающая на своем пути антенну, возбуждает в ней переменные токи. Наводимые в антенне переменные токи, в свою очередь, сами создают электромагнитное поле. Иными словами, энергия зондирующей волны не только поглощается в антенне и подключенной к ней нагрузке и переходит в тепло, но и частично переизлучается обратно в пространство, то есть антенна обладает способностью отражать электромагнитные волны и характеризуется ЭПР.
  10. ↑ Действующая высота антенны — коэффициент, равный отношению амплитуд ЭДС на клеммах антенны и напряженности электрического поля в месте расположения антенны. Действующая высота антенны — электрический параметр, применяемый для проволочных антенн и аналогичный эффективной площади антенны, применяемой для апертурных антенн. Действующая высота антенны не тождественна ни длине антенны, ни высоте расположения антенны над поверхностью грунта, название обусловлено размерностью (м).
  11. ↑ Векторная импульсная характеристика (ВИХ) антенны (от англ. Vector Effective Height — векторная эффективная высота) — обобщение параметра действующая высота антенны на случай нестационарного электромагнитного поля и произвольной ориентации антенны относительно вектора напряженности электрического поля. ВИХ позволяет рассчитать отклик антенны на электромагнитный импульс с произвольной пространственно-временной зависимостью.
  12. ↑ Векторная передаточная характеристика — фурье-пара векторной импульсной характеристики антенны.
  13. ↑ В некоторых источниках используется термин энергетический потенциал; в радиолокации и радиосвязи энергетический потенциал имеет другое значение и определяется как отношение мощности радиопередатчика к пороговой чувствительности радиоприемника, выраженное в децибелах.
  14. Г. Т. Марков, Д. М. Сазонов. Антенны. М.: Энергия, 1975. С. 497.
  15. ↑ Симметричный вибратор — проволочная (то есть состоящая из проводника, размеры поперечного сечения которого много меньше длины проводника) антенна, состоящая из двух проводников (плеч) одинаково длины, расположенных симметрично относительно некоторой плоскости.
  16. ↑ Разрезной вибратор — вибраторная антенна, в которой плечи являются отдельными проводниками и в которой возбуждение осуществляется путём создания ЭДС между ближайшими концами плеч.
  17. ↑ Шунтовой вибратор — вибраторная антенна, в которой плечи являются единым проводником, а возбуждение осуществляется с помощью шунта или двух шунтов — проводников, расположенных параллельно плечам и подключенных к ним на некотором расстоянии от центра симметрии. Шунтовое питание позволяет увеличить входное сопротивление вибратора, выполнить вибратор в виде единого проводника (например, металлической трубки) и тем самым повысить его механическую прочность, а также заземлить точку нулевого потенциала вибратора и тем самым исключить необходимость в разделительном изоляторе в точке питания и обеспечить молниезащиту.
  18. ↑ Петлевой вибратор — предельный случай шунтового вибратора, в котором длина шунта совпадает с длиной вибратора. Входное сопротивление петлевого вибратора, состоящего из разрезного вибратора и подключённого к его дальним концам шунта такой же длины и диаметра, в 4 раза больше, чем собственно у разрезного вибратора в таких же условиях; если используется два шунта — то сопротивление будет больше в 9 раз. Петлевой вибратор удобно возбуждать двухпроводным фидером, коаксиальной линией передачи с симметрирующим U-коленом, а также использовать как активный элемент антенн «волновой канал» (где он позволяет увеличить полное, то есть собственное + вносимое, входное сопротивление, которое часто оказывается слишком низким, а также заземлить активный элемент и тем самым обеспечить молниезащиту). Вариант исполнения шунтового вибратора в виде вибратора Надененко — антенна ВГДШ (вибраторная горизонтальная диапазонная шунтовая).
  19. ↑ Диполь Надененко, антенна ВГД (вибраторная горизонтальная диапазонная) — проволочная вибраторная антенна декаметрового диапазона с увеличенным диаметром плеч (до нескольких метров) для расширения рабочей полосы частот. Плечи выполнены из набора параллельных проводников, разделённых металлическими обручами и имитирующих цилиндрический проводник большого диаметра. На концах плеч проводники образуют конус — сходятся в одну точку и соединяются концевым изолятором и изолятором точки питания. Возбуждение — двухпроводной линией. Применяются варианты в виде петлевого вибратора Пистолькорса (антенна ВГДШ — вибраторная горизонтальная диапазонная шунтовая) и несимметричного вибратора (штырь). Широко используются на передающих радиоцентрах
  20. ↑ Уголковая вибраторная антенна — симметричная вибраторная антенна, плечи которой располагаются в горизонтальной плоскости под углом друг к другу. Антенна обеспечивает близкую к равномерной диаграмму направленности в горизонтальной плоскости.
  21. ↑ от англ. Inverted «V» — перевернутая «V», симметричный вибратор с наклоненными к плоскости симметрии плечами
  22. ↑ «Коаксиальная» антенна — вертикальный симметричный трубчатый полуволновый вибратор, возбуждаемый в зазоре коаксиальным фидером, проходящим внутри одного из трубчатых плеч. Это плечо выполняет функцию симметрирующего устройства типа четвертьволновый стакан. По принципу действия эта антенна близка к антенне CFR. Антенна используется для радиосвязи в диапазонах ОВЧ и УВЧ при невысокой мощности радиопередатчика.
  23. ↑ CFR (от англ. Controlled Fider Radiation, антенна с управляемым излучением фидера) — вибраторная горизонтальная антенна диапазона ВЧ, в которой одним из плеч (четвертьволновым противовесом) служит внешняя поверхность экрана коаксиального кабеля (фидера). Электрическую длину этого плеча ограничивают, создавая в требуемом месте большое реактивное сопротивление (индуктивная катушка из фидера, феррит, фильтр-пробка). По принципу действия эта антенна близка к «коаксиальной» антенне.
  24. ↑ Несимметричный вибратор — вибраторная антенна, не имеющая плоскости симметрии. Под несимметричным вибратором понимают вибраторную антенну с разной длиной или формой плеч, с различным числом проводников, образующих плечи, с другой асимметрией. К несимметричным вибраторам относят штыревые антенны, в которых одним из плеч служит реальный прямолинейный проводник, расположенный перпендикулярно проводящей поверхности (металлическому диску, поверхности грунта и др.), причем эта поверхность используется в качестве второго проводника.
  25. ↑ от англ. Ground Plane — земляная плоскость, штыревая антенна с проволочными противовесами
  26. ↑ Укороченная штыревая антенна — штыревая антенна, физическая длина излучающей части которой меньше электрической (резонансной) длины.
  27. ↑ Коллинеарная антенна (от англ. colliear — на одной прямой) — многоэлементая штыревая антенна диапазона УВЧ, в которой трубчатые вибраторы расположены вдоль одной прямой и соединены через LC-цепи или шлейфы, обеспечивающие синфазное возбуждение токов в вибраторах.
  28. ↑ J-образная антенна — несимметричный вариант шунтового вибратора для диапазонов ВЧ и УВЧ. Штырь с шунтовым питанием и проволочными противовесами, по форме напоминающий букву «J», с заземленным (не требующим изолятора) «длинным» элементом.
  29. ↑ Расчет элементов J-образной антенны
  30. ↑ Антенна Александерсена — несимметричный вариант шлейф-вибратора Пистолькорса с несколькими шлейфами и удлинением индуктивностями в местах соединения с заземлением. Антенна предназначена для диапазонов ДВ и СДВ. Шлейфы позволяют поднять сопротивление излучения в точке питания. Марков Г. Т., Сазонов Д. М. Антенны. М.: Энергия, 1975. С. 511—512.
  31. ↑ Директорная антенна — многоэлементная антенна продольного излучения, содержащая один или несколько активных[en] (то есть электрически соединенных с источником возбуждения) элементов и один или несколько пассивных[en] (возбуждаемых за счет электродинамической связи с другими элементами) элементов-директоров, определяющих форму диаграммы направленности и размещенных в направлении её максимума относительно активных элементов.
  32. ↑ Г. З. Айзенберг, С. П. Белоусов, Э. М. Жубенко и др. Коротковолновые антенны / Под ред. Г. З. Айзенберга. М: Радио и связь, 1985. С. 312—343. С. 224—263
  33. ↑ Щелевой вибратор — антенна в форме тонкой щели, прорезанной в металлической поверхности.
  34. ↑ Пазовая антенна — несимметричный вариант щелевой антенны, то есть щель, прорезанная в кромке металлической поверхности и возбуждаемая в зазоре щели вблизи кромки.
  35. ↑ Класс антенн, у которых излучение происходит через раскрыв (плоское отверстие — апертуру). Наибольшее распространение получили в СВЧ-диапазоне
  36. ↑ Зеркальная антенна с вынесенным (от англ. offset — смещение) из фокуса параболического рефлектора облучателем. Рефлектор практически не затеняется облучателем, и негативное влияние рассеяния на облучателе на характеристики антенны снижено
  37. ↑ Двухзеркальная антенна, оснащённая вспомогательным рефлектором выпуклой формы
  38. ↑ Двухзеркальная антенна, оснащённая вспомогательным рефлектором вогнутой формы
  39. ↑ Антенна, применяемая в радиолокации воздушных целей, с диаграммой направленности специальной формы, позволяющей скомпенсировать зависимость мощности радиолокационного отклика от дальности до цели. Выполняется как зеркальная антенна с рефлектором сложной формы либо как антенная решетка со специально подобранным амплитудно-фазовым распределением. Косекансная диаграмма направленности выгодна и для передающих радио- и телевещательных антенн, чтобы уменьшить ненужную высокую напряженность электромагнитного поля на территории вблизи передающей антенны и сосредоточить её на более отдалённых территориях.
  40. ↑ Диаграммообразующее устройство для антенной решётки (АР), содержащее набор облучателей, вспомогательную антенную решётку и систему фидеров (на основе коаксиальных кабелей, металлических волноводов) различной длины, соединяющую вспомогательную АР с основной АР и выполняющую функцию линзы (преобразующую сферический фронт волны облучателя в плоский фронт волн на входах излучающих элементов основной АР, причём наклон плоского фронта определяется местоположением облучателя относительно вспомогательной АР).
  41. ↑ Позволяет излучать электромагнитную волну с круговой поляризацией. Наибольшее распространение получили в дециметровом диапазоне. Часто применяется на борту космических аппаратов, размещённых не на геостационарной орбите, и в облучателях зеркальных антенн наземных станций спутниковой связи
  42. ↑ V-образная антенна (англ. V-beam) — симметричная проволочная антенна направленного действия декаметрового диапазона, состоящая из двух прямолинейных проводников, сходящихся в точке питания и подключенных на дальних концах к заземленным поглощающим нагрузкам. В плане напоминает букву V, оптимальное по КНД значение угла между проводниками связано с длиной проводников, направление максимума диаграммы направленности совпадает с гипотенузой угла. Является симметричным аналогом нагруженной антенны «длинный провод».
  43. ↑ В плане имеет форму ромба. Симметричная проволочная антенна направленного действия, модификация V-образной антенны с одной поглощающей нагрузкой, включенной между плечами на противоположном точке питания конце. Применяется в декаметровом диапазоне.
  44. ↑ Приёмная антенна направленного действия в виде прямолинейного проводника, расположенного на небольшой высоте над поверхностью грунта. Применяется в диапазонах средних и коротких волн
  45. ↑ По форме напоминает букву V. Образуется при подвесе средней точки провода антенны Бевереджа на большой высоте с образованием равнобедренного треугольника (полуромба) в вертикальной плоскости;
  46. ↑ Вариант полученный преобразованием V-образной антенны в вертикальной плоскости, при которой точка подвеса смещается ближе к радиостанции и образуются плечи антенны разной длины
  47. ↑ Антенны БС, БЕ, БИ — антенны бегущей волны с излучающими элементами-вибраторами, подключенными к собирающей двухпроводной линии передачи через сопротивления, емкости или индуктивности. Англ. название — Fish Bone («рыбья кость»). Г. З. Айзенберг, С. П. Белоусов, Э. М. Жубенко и др. Коротковолновые антенны / Под ред. Г. З. Айзенберга. М: Радио и связь, 1985. С. 312—343.
  48. ↑ Разновидность полосковой антенны, изготавливаемая по печатной технологии на диэлектрическом основании, что позволяет снизить её стоимость и сократить габаритные размеры.
  49. ↑ от англ. Planar inverted «F» — планарная перевернутая «F»
  50. ↑ Тип антенн с сингулярными функциями, описывающими их характеристики
  51. ↑ Антенна, монтируемая по технологии SMD
  52. ↑ Сокращение от «логарифмическая периодическая антенна» — класс антенн с периодической зависимостью геометрических параметров и электрических характеристик от логарифма частоты
  53. ↑ Антенная решетка — совокупность излучающих элементов, расположенных в определённом порядке, ориентированных и возбуждаемых так, чтобы получить заданную диаграмму направленности.
  54. ↑ Пассивная или активная антенная система, представляющая собой совокупность аналого-цифровых (цифро-аналоговых) каналов с общим фазовым центром, в которой формирование диаграммы направленности осуществляется в цифровом виде, без использования фазовращателей
  55. ↑ CTS —- Continuous Transverse Stub
  56. ↑ Рамка с периметром λmin и диаграммой направленности типа восьмерка. Пеленгация осуществляется вращением антенны. Для устранения неоднозначности пеленга и формирования диаграммы направленности типа кардиоида антенна дополняется ненаправленным штыревым элементом и схемой сложения сигналов.
  57. ↑ Модификация рамочной пеленгаторной антенны для автоматизации пеленгации, содержащая две рамочные антенны, плоскости которых взаимно перпендикулярны. Выходы рамочных антенн подключаются к гониометру.
  58. ↑ Антенна Эдкока (по фамилии изобретателя, 1919 г.) — четырёхэлементная пеленгаторная антенная решетка диапазонов КВ и УКВ. Вертикальные ненаправленные элементы антенны расположены на плоскости в углах квадрата с длиной диагонали λmin, причем диагонально-противоположные элементы соединены линией передачи параллельно-встречно. Выходами каждой из двух пар элементов являются средние точки соединяющей линии передачи. Таким образом, антенна имеет две пары клемм и действует аналогично пеленгаторной антенне в виде пары перпендикулярных друг другу рамочных антенн с периметром λmin: если диагональ квадрата параллельна фронту падающей волны (направление минимума диаграммы направленности), то расположенные на этой диагонали вибраторы возбуждаются синфазно, и на выходе этой пары напряжение равно нулю; если фронт набегает вдоль диагонали (направление максимума диаграммы направленности), то фазы токов вибраторов различны, и полной компенсации напряжений на выходе этой пары не происходит. В качестве элементов антенны используются несимметричные (штыри) или симметричные вибраторы. Выходы антенны подключается к гониометру, XY-каналам осциллографа или иному средству определения пеленга. Для устранения неоднозначности пеленга антенна снабжается пятым элементом.
  59. ↑ Антенна Вулленвебера (от нем. Wullenweber) — пеленгаторная кольцевая фазированная антенная решетка декаметрового диапазона дальнего действия, состоящая из цилиндрического экрана-сетки, расположенных с внешней стороны нескольких десятков-сотен вертикальных вибраторных элементов (два концентрических кольца — два диапазона), системы фидеров и аппаратного центра. Антенна и принципы её использования разработаны в конце 1930-х годов в Германии, с 1950-х десятки антенн по всему миру использовались США и СССР.
  60. ↑ Антенны с синтезированной апертурой
  61. ↑ Антенная решетка, излучающие элементы которой подключены к многоканальному гибридному оптоэлектронному процессору, осуществляющему формирование характеристики направленности
  62. ↑ Антенна, размеры которой меньше половины длины волны принимаемых электромагнитных колебаний
  63. ↑ Tianxiang Nan, Hwaider Lin, Yuan Gao, Alexei Matyushov, Guoliang Yu, Huaihao Chen, Neville Sun, Shengjun Wei, Zhiguang Wang, Menghui Li, Xinjun Wang, Amine Belkessam, Rongdi Guo, Brian Chen, James Zhou, Zhenyun Qian, Yu Hui, Matteo Rinaldi, Michael E. McConney, Brandon M. Howe, Zhongqiang Hu, John G. Jones, Gail J. Brown & Nian Xiang Sun, «Acoustically actuated ultra-compact NEMS magnetoelectric antennas», Nature Communications, 8, 296, pp. 1 — 8, 22 August 2017. [1]
  64. ↑ Коаксиальный кабель с намеренно ухудшенной экранировкой. Используется для организации радиосвязи в тоннелях, шахтах
  65. Дмитрий Сафин. Реализована оптическая «наноантенна» (неопр.) (недоступная ссылка) (21 августа 2010). — Компьюлента. Дата обращения 27 ноября 2012. Архивировано 14 июля 2014 года.
  66. ↑ И. Гончаренко. EH-антенна / В кн.: Антенны КВ и УКВ. Часть 2. Основы и практика (недоступная ссылка)
  67. ↑ Васильков В. Н., Виноградов А. Д., Мозговой П. А., Николаев В. И. EH-антенна. Мнение по статье М. М. Башкирова и др. «Результаты экспериментальных исследований ЕН-антенны» // Антенны, 2013, № 4 (191), с. 71—75. (неопр.) (недоступная ссылка). Дата обращения 6 июля 2013. Архивировано 21 июня 2015 года.

Источник: ru.wikipedia.org


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.