Составные части холодильника


Прибор, поддерживающий низкую температуру в специальной камере с теплоизоляцией, называется холодильником. Принцип его работы заключается в применении холодильной машины, транспортирующей тепло из рабочей камеры во внешнюю среду. Если у вас возникнут проблему с холодильником и вы проживаете в Саратове, обратитесь в нашу фирму. Ремонт холодильника в Саратове  не проблема, если им занимаются специалисты компании «ХолодРемонт», на всю выполненную работу даем гарантию.

Устройство компрессионного холодильника

компрессионного холодильникаВ составе холодильников компрессионного типа присутствует компрессор, способствующий циркуляции хладагента путем преобразования электрической энергии в механическую. В данный момент такие холодильные аппараты пользуются наибольшей популярностью. Они отличаются сравнительно невысокой ценой, безопасностью в эксплуатации и долговечностью. В роли хладагента обычно используются фреоны либо изобутан.

К основным элементам, составляющим холодильник, относятся компрессор, испаритель, конденсатор, датчик-реле температуры, терморегулирующий вентиль, хладагент, пусковое и тепловое реле, электронный блок управления.

Мотор-компрессор


Мотор-компрессорВ состав мотор-компрессора входит электромотор и компрессор. Двигатель преобразовывает электрическую энергию в механическую, что приводит в действие компрессор. Располагается зачастую в нижней задней части холодильника.

Компрессор предназначен для создания требуемой разности давлений. Хладагент (вещество, предназначенное для переноса тепла из испарителя в конденсатор) в парообразном состоянии поступает из испарителя в компрессор, откуда перенаправляется в конденсатор. В устройстве бытовых холодильников используются герметичные поршневые мотор-компрессоры.

Мотор-компрессорКонструкция таких деталей предполагает расположение электродвигателя во внутренней части корпуса компрессора. Такое расположение электродвигателя предотвращает возможность утечки хладагента сквозь уплотнение вала. Тем самым уменьшая возможность дальнейшего ремонта холодильника.

С целью поглощения вибраций, возникающих во время работы, используется подвеска компрессора.


двеска, в свою очередь, бывает внутренней (двигатель компрессора подвешивается внутри корпуса) и внешней (корпус компрессора подвешивается на пружине). В современных моделях бытовых холодильников в основном используется внутренняя подвеска, так как она значительно эффективнее способна поглощать вибрации компрессора, чем наружная. Смазывают компрессор специальными рефрижераторными маслами, способными хорошо взаимодействовать с хладагентом.

В зависимости от предназначения, бытовые холодильники могут быть оборудованы одним или двумя компрессорами.

Конденсатор холодильника

КонденсаторОсновное назначение конденсатора – передача тепловой энергии в окружающую среду. В большинстве случаев конденсатор располагается на задней стенке холодильника с наружной стороны. Выглядит он как изогнутая в виде змейки металлическая трубка. Для более эффективного отвода тепла трубка соединена с объемной ребристой поверхностью.

В конденсатор поступает нагретый за счет сжатия хладагент. Отдавая тепло в окружающую среду, хладагент остывает и конденсируется, преобразовываясь в жидкое агрегатное состояние и поступает в капилляр. В большинстве бытовых холодильников используются ребристо-трубные конденсаторы. Тепло от конденсаторов отводится естественным путем, посредством конвенции либо радиации. В таких устройствах для оребрения используют стальной лист с прорезями либо стальную проволоку.

Для обдува конденсатора с принудительным охлаждением используют вентиляторы.

Испаритель холодильника


ИспарительОсновное назначение испарителя – забор тепла из внутреннего пространства холодильника. Внешне он представляет собой трубку, соединенную с металлической пластиной. Испаритель холодильной камеры располагается на ее задней стенке, испаритель морозильной камеры в большинстве случаев совмещается с ее корпусом.

Посредством ТРВ либо капилляра под давлением жидкий хладагент поступает в испаритель. В испарителе давление резко уменьшается, за счет чего происходит испарение жидкости из хладагента. Охлаждение внутреннего пространства холодильника происходит за счет того, что хладагент забирает тепло из внутренних стенок испарителя.

Иными словами, хладагент под влиянием высокого давления в конденсаторе переходит в жидкое состояние (конденсируется) и выделяет тепло. Хладагент вскипает, попадая в испарителе в условия низкого давления. Постепенно поглощая тепловую энергию, он трансформируется в газообразное агрегатное состояние.

ТРВ (терморегулируемый расширительные вентиль)

ТРВТРВ (терморегулируемый расширительные вентиль) предназначен для создания требуемой разности давлений между испарителем и конденсатором, необходимой для осуществления цикла теплопередачи. Он позволяет максимально заполнить внутреннее пространство испарителя нагретым хладагентом. В большинстве холодильников ТРВ заменяет капилляр (тонкая металлическая трубка небольшого диаметра).


По мере того как снижается тепловая нагрузка на испаритель, изменяется степень пропускного сечения ТРВ. При снижении температуры в камере, автоматически снижается количество циркулирующего хладагента. Капилляр, функционируя не способен изменять свое сечение, но в свою очередь, дросселирует определенный объем хладагента.

Важную роль в работе холодильника играет степень чистоты хладагента. Наличие в его составе примесей или воды способно привести к повреждению компрессора либо засорению капилляра. Вода в хладагент может проникнуть во время заправки холодильника или попасть через неплотности в поверхности компрессора. Очень важно во время заправки вакуумировать контур и соблюдать герметичность. Практически в каждом холодильнике устанавливается перед капилляром фильтр-осушитель, для защиты хладагента от попадания влаги. К образованию примесей может привести коррозия внутренней поверхности стенок трубопроводов.

Некоторые конструкции холодильников предусматривают также и наличие теплообменника, предназначенного для регулирования температуры на выходе из испарителя и из конденсатора. Результатом его работы является то, что к дросселю подается уже остывший хладагент, способный в испарителе охладиться еще сильнее. В свою очередь, хладагент, поступая из испарителя, нагревается перед поступлением в конденсатор и компрессор. Использование теплообменника способствует увеличению производительности холодильника и предотвращает проникновение хладагента в жидком состоянии в компрессор.

Реле


Пусковое реле предназначено для запуска мотора кратковременной подачей питающего напряжения на его пусковую обмотку. Для защиты от перегрузок используют тепловое реле. Обе детали размещают непосредственно рядом с компрессором.

Датчик-реле температуры

Датчик-реле температурыОсновная функция терморегуляторов – поддержание требуемой температуры в камерах холодильника. Его относят к основным узлам системы контролирования температурного режима. Терморегуляторы способны функционировать в заданном диапазоне температур (корректируются котировочными винтами и механическим регулятором).

Когда температура в камере начинает превышать верхнюю заданную границу, реле включает мотор компрессора и наоборот – при понижении температуры оно отключает мотор.

капиллярной трубкой


Капиллярная трубка

В состав терморегулятора входят электрические контактные подгруппы, управление которыми осуществляет манометрический датчик. Для контроля температуры в камере холодильника, датчик снабжается капиллярной трубкой, часть которой располагается внутри камеры.

В последних моделях холодильников функцию регулирования температуры выполняют электронные системы управления. Контроль над уровнем температуры обеспечивается за счет датчиков-термисторов, способных зависимо от температуры окружающей среды изменять уровень своего внутреннего сопротивления. Точность таких приборов значительно выше, чем стандартных терморегуляторов.

Электронный блок управления

Электронный блок управленияВ различных моделях холодильников комплектация, расположение и внешний вид электронного модуля может отличаться. В большинстве случаев он состоит из четырех элементов – платы управления (на ней располагается микропроцессор), индикации, кабеля, соединяющего платы между собой (10-ти или 20-ти канального), температурных датчиков.

Главным элементом электронного блока управления является микропроцессор. Именно он выполняет управление над всеми узлами холодильника. Данный ремонт холодильника лучше доверить мастеру.

Основные типы холодильников

типы_холодильниковТип холодильника определяется, отталкиваясь от нескольких параметров.


к, в зависимости от сферы назначения различают морозильники, холодильники и холодильники-морозильники. В зависимости от способа получения холода – абсорбционные и компрессионные. По способу установки – напольные по типу шкаф либо стол. В зависимости от числа камер холодильники подразделяются на одно-, двух- или трехкамерные.

Наибольшей популярностью на мировом и отечественном рынках пользуются двухкамерные холодильники. В основном они состоят из холодильной и морозильной камер.

Side-by-side

Холодильник Side-by-side

Самая большая камера у холодильников «Side-by-side». Их конструкция предполагает расположение по бокам морозильной и холодильной камер, причем каждая из них закрывается отдельной дверью. В холодильниках типа «Combi» объем морозильной камеры может составлять до половины общего полезного объема. В большинстве случаев морозильная камера в таких устройствах располагается ниже холодильного отделения.

В зависимости от способа размораживания различают холодильники с ручным, автоматическим либо полуавтоматическим размораживанием. В ручном размораживании нуждаются холодильники старого образца. Некоторые модели холодильников оснащены специальным реле оттаивания, способным отключать питание компрессора. Обратно включается компрессор после того, как внутри холодильника установится температура, близкая к комнатной. Этого времени достаточно для оттаивания ледяной шубы.


Большая часть современных холодильников обладает функцией автоматического размораживания морозильной камеры. Избыточная влага со стенок испарителя стекает по специальному желобу в лоток, расположенный на крышке компрессора. Из лотка вода постепенно испаряется под воздействием тепловой энергии, исходящей от корпуса компрессора. Процесс размораживания цикличен и не нуждается в постороннем вмешательстве либо контроле.

зоной нулевой температуры

Зона нулевой температуры

Трехкамерные холодильники оборудованы кроме морозильной и холодильной камер, еще и зоной нулевой температуры. Некоторые производители оснащают такую зону возможностью выполнять функции какой-либо из камер, посредством понижения либо повышения в ней температуры.

Также холодильники могут обладать статической либо динамической системой охлаждения. В статических системах воздух либо неподвижен, либо перемещается посредством естественной конвенции. Применяется в основном во многих бюджетных холодильниках. В динамической системе воздух циркулирует под действием вентилятора. Такая система получила название «No Frost» и позволяет добиться равномерного распределения температуры по всей площади камеры и быстрое восстановление заданной температуры после ее повышения. Главное преимущество такой системы – при работе холодильника на стенках камеры не образовывается иней.

Устройство и принцип действия абсорбционного холодильника


Абсорбционный холодильникВ холодильниках абсорбционного типа рабочая камера охлаждается за счет испарения хладагента, циркулирующего в водном растворе. В основном, в качестве хладагента используют аммиак. До 1000 единиц объема аммиака способно раствориться в одной единице объема воды. Концентрированный аммиачный раствор из абсорбера перетекает в генератор (десорбер), затем в дефлегматор, где расщепляется на аммиак и воду. В конденсаторе происходит сжижение газообразного аммиака, после чего он снова подается в испаритель, а очищенная вода – в абсорбер.

Циркуляцию воды могут обеспечить устройства, функционирующие без подвижных элементов, к примеру, струйные насосы. Нормальное функционирование системы холодильника также обеспечивает добавление газа, инертного к компонентам системы. Он позволяет добиться одинакового давления во всей системе.

Кроме аммиака и воды в абсорбционных холодильниках также могут быть использованы и другие пары веществ – ацетилен, раствор бромистого лития либо ацетон.


Одними из явных преимуществ холодильников такого типа является бесшумность, возможность функционирования за счет нагрева прямым сжиганием топлива. К недостаткам таких агрегатов относят краткий эксплуатационный срок, чувствительность к расположению на поверхности пола, низкие показатели хладопроизводительности. Еще один недостаток – наличие в системе горючего водорода и ядовитого аммиака. В обычных квартирах такие устройства используются редко, в основном – в кемпингах, либо загородных домах, где наблюдаются перебои с электричеством.

Иногда встречаются термоэлектрические холодильники, либо устройства, работающие на вихревых охладителях. Из-за сложностей в эксплуатации, дороговизны и других нюансов большого распространения такие холодильники не получили.

Основные элементы холодильного шкафа

холодильного шкафаКонструкция холодильного шкафа представляет собой сочетание множества различных элементов. Так, его стенки состоят из двух частей, между которыми укладываются теплоизоляционные материалы. Энергопотребление холодильника зависит от качества теплоизоляции.

Для размещения продуктов используются полки. Могут быть стеклянные либо решетчатые.

Дверца холодильника также состоит из нескольких слоев. Предотвратить проникновение теплого воздуха через неплотности между дверью и корпусом холодильника помогает уплотнитель. В современных моделях он оборудован магнитной вставкой. На дверцах тоже располагаются полки для продуктов. Дверной проем в морозильных камерах иногда может быть оснащен электрическим нагревателем – это предохраняет ее от выпадения конденсата.

осветительные приборыС целью освещения холодильной камеры используются осветительные приборы небольшой мощности, способные срабатывать при открывании дверцы. В некоторых моделях холодильников предусмотрено наличие сигнализации открытия двери. В соответствии с таймером, через определенный промежуток времени сигнализация срабатывает. Это необходимо для предотвращения таких случаев, когда холодильник забывают закрыть.

Источник: holod-remont64.ru

История создания[править | править код]

Помещения для хранения продуктов, наполняемые льдом, появились несколько тысяч лет назад. Для императора Нерона слуги заготавливали на замерзших водоемах в горах снег и лёд. В Тёмные века Южная Европа долгое время даже не подозревала, что снег и лёд способны принести пользу в хозяйстве. Знаменитый путешественник и купец Марко Поло после длительного пребывания в Китае написал книгу, в которой описал все достоинства льда и снега.

Начиная с XVIII века ёмкости из фаянса и фарфора заполнялись бутылками с вином, после чего сверху укладывали колотый лёд. Своеобразный холодильник подавали прямо к столу.

В России широко использовались ледники, которые представляли собой сруб, врытый в землю. Набитый большим количеством снега и льда, укрытый толстым настилом, поверх которого была насыпана земля и уложен дёрн, такой ледник позволял хранить длительное время скоропортящиеся продукты.

В 1686 году итальянец Франческо Прокопио открыл в Париже кафе «Прокоп», которое пользовалось популярностью у парижан за счёт того, что в нём продавали замороженные щербеты и мороженое.

В 1803 году американский предприниматель Томас Мур, поставляющий в Вашингтон сливочное масло, представил миру прототип кухонного холодильника, изготовленного своими руками. Не имея возможности доставлять масло к месту назначения специальным транспортом, он разработал, а затем воплотил в жизнь модель, которая позволяла хранить продукты длительное время. Для изготовления рефрижератора, как предприниматель назвал своё изобретение, ему понадобились тонкие листы стали, из которых и была изготовлена ёмкость для масла. Обёрнутая шкурками кролика, ёмкость была помещена в специальную бадью, изготовленную из кедровых клепок, и затем засыпана сверху льдом.

Массово использовались в середине XIX века домашние ледники. Внешне их невозможно было отличить от обычных кухонных шкафов. Кроличьи шкурки для теплоизоляции уже не использовались, вместо них засыпались опилки и пробка. Отсек, который заполнялся льдом, в одних моделях был под камерой для продуктов, а в других над ней. Через кран талая вода сливалась в специальный поддон.

14 июля 1850 года американский врач Джон Гори впервые продемонстрировал процесс получения искусственного льда в созданном им аппарате. В своём изобретении он использовал технологию компрессионного цикла, которая применяется в современных холодильниках, а сам аппарат мог служить одновременно морозильником и кондиционером[1].

В 1857 году австралиец Джеймс Харрисон стал применять холодильные камеры, работающие с использованием компрессора, в пивоваренной и мясообрабатывающей промышленности.

В 1857 году был создан первый железнодорожный вагон-рефрижератор.

Французский учёный Фердинанд Карре в 1858 году придумал, как за счёт абсорбции аммиака можно получать искусственный холод — придумал первую абсорбционную холодильную машину. Несмотря на то, что его способ был очень удачным, об изобретении забыли на несколько десятилетий.

В 1879 году аристократ из Германии Карл фон Линде изобрёл устройство с компрессором, для работы которого он использовал аммиак. Благодаря его холодильной машине появилась возможность производить лёд в огромном количестве. Данные агрегаты сразу же закупили многие бойни и фабрики, изготавливающие пищевые продукты. Принцип работы представлял собой циркуляцию холодного рассола по системе труб, которая была разветвлена, таким образом помещение, в котором хранились продукты, охлаждалось. Данное изобретение позволило многим предпринимателям открывать холодильные склады больших размеров[2].

В начале XX века в Москве была открыта фирма, которая предлагала всем желающим агрегат под названием «Эскимо». Данное устройство было изготовлено по принципу, предложенному Фердинандом Карре. При своих больших габаритах, устройство не издавало громкого шума и было универсальным. Для работы необходимы были уголь, дрова, керосин или спирт. Один цикл работы «Эскимо» позволял получить 12 кг льда.

Первый бытовой электрический холодильник был создан в 1913 году. Как и промышленные холодильники, он работал с использованием принципа теплового насоса. В первых бытовых холодильниках в качестве охлаждающей жидкости использовались достаточно токсичные вещества.

В 1926 году Альберт Эйнштейн со своим прежним студентом Лео Силардом предложили вариант конструкции абсорбционного холодильника, именуемого эйнштейновским.

В 1926 году датский инженер Кристиан Стинструп представил миру бесшумный, безвредный и долговечный холодильник, предназначенный именно для дома. Герметичный колпак скрывал как электродвигатель холодильника, так и его компрессор. General Electric приобрела патент на его изобретение.

Первая получившая широкое распространение модель холодильника Monitor-Top была произведена фирмой General Electric в 1927 году. General Electric продала более 1 млн экземпляров Monitor-Top.

С 1930 года в качестве хладагента в бытовых холодильниках применяется фреон. В 1940-е годы в холодильниках появляются морозильные отделения, также возникают обособленные морозильные шкафы. В 1950—1960-е годы на рынок выходят холодильники с функцией размораживания.

В СССР первые образцы бытового компрессионного холодильника производятся в 1937 году. Серийный выпуск холодильников ХТЗ-120 начался в 1939 году на Харьковском тракторном заводе. Ёмкость камеры составляла 120 литров, до начала Великой Отечественной войны выпущено несколько тысяч единиц.

В 1951 году автомобильный завод ЗИС выпустил первую партию знаменитых холодильников «Москва». Холодильники «Москва» отличались высоким качеством изготовления и долговечностью — многие холодильники продолжают работать спустя полвека, однако достигнуто это было ценой высокой трудоёмкости изготовления и расхода большого количества металла[3].

К 1962 году холодильники имели: в США — 98,3 % семей, в Италии — 20 %, а в СССР — 5,3 % семей[4].

Типы холодильных агрегатов по принципу действия[править | править код]

  • Компрессионный
  • Абсорбционный
  • Термоэлектрический
  • С вихревыми охладителями

Устройство и принцип действия компрессионного холодильника[править | править код]

Теоретической основой, на которой построен принцип работы холодильников, является второе начало термодинамики. Охлаждающее рабочее тело (хладагент) в холодильниках совершает так называемый обратный цикл Карно. При этом основной вклад в передачу теплоты вносит изменение термодинамического состояния хладагента не в цикле Карно, а в фазовых переходах — испарении и конденсации хладагента. В принципе, возможно применение в холодильном цикле только цикла Карно, но при этом для достижения высокой хладопроизводительности потребуется или компрессор, создающий очень высокое давление, или очень большая площадь теплообмена в охлаждающем и нагревающем теплообменниках.

Основными составляющими частями холодильника являются:

  • компрессор, создающий необходимую разность давлений;
  • испаритель, забирающий тепло из внутреннего объёма холодильника;
  • конденсатор, отдающий тепло в окружающую среду;
  • терморегулирующий вентиль, поддерживающий разность давлений за счёт дросселирования хладагента;
  • хладагент — вещество, переносящее тепло от испарителя к конденсатору.

Компрессор засасывает из испарителя хладагент в виде пара, сжимает его (при этом температура хладагента повышается) и нагнетает в конденсатор, где хладагент конденсируется в жидкость отдавая теплоту конденсации во внешнюю среду.

В бытовых холодильниках используются герметичные поршневые мотор-компрессоры. В таких компрессорах электродвигатель располагается внутри корпуса компрессора, что позволяет предотвратить утечки хладагента через уплотнение вала. Для поглощения вибраций применяется упругая подвеска мотор-компрессора. Подвеска мотор-компрессора может быть наружной, когда на пружинах подвешивается весь корпус мотор-компрессора, или внутренней, когда подвешен только электродвигатель компрессора внутри корпуса.

В современных бытовых холодильниках наружная подвеска не применяется, так как она хуже поглощает вибрации компрессора и сильно шумит. Для смазки трущихся частей компрессора и электродвигателя применяют специальные рефрижераторные масла, обладающие низкой температурой застывания. Масло и хладагент хорошо растворяются друг в друге.

В конденсаторе нагретый в результате сжатия хладагент остывает, отдавая тепло во внешнюю среду, и при этом конденсируется, то есть превращается в жидкость, поступающую в капилляр.

В бытовых холодильниках чаще всего применяются ребристо-трубные конденсаторы, в качестве оребрения применяется стальная проволока или стальной перфорированный лист. Отвод тепла от конденсаторов обычно естественный — за счёт конвекции и теплового излучения, в высокопроизводительных и промышленных холодильниках применяется принудительное охлаждение конденсатора вентиляторным воздухом или водой.

Жидкий хладагент под давлением через дросселирующее отверстие (капилляр или терморегулируемый расширительный вентиль) поступает в испаритель, где за счёт резкого уменьшения давления происходит испарение жидкости. При этом хладагент отнимает тепло у внутренних стенок испарителя, отбираемая теплота расходуется на теплоту кипения жидкости, за счёт чего происходит охлаждение холодильного пространства холодильника, где и находится испаритель.

Испарители бытовых холодильников чаще всего листотрубные, сваренные из пары алюминиевых листов с внутренними каналами для прохождения хладагента. Испаритель морозильной камеры часто и является её корпусом, в то время как испаритель холодильной камеры (в холодильниках с двумя испарителями) располагают на задней стенке камеры.

Таким образом, в конденсаторе хладагент под воздействием высокого давления конденсируется и переходит в жидкое состояние, выделяя теплоту, а в испарителе под воздействием низкого давления вскипает и переходит в газообразное, поглощая теплоту.

Терморегулируемый расширительный вентиль необходим для создания необходимой разности давлений между конденсатором и испарителем, при которой происходит цикл теплопередачи. Он позволяет правильно (наиболее полно) заполнять внутренний объём испарителя кипящим хладагентом. Пропускное сечение вентиля изменяется по мере снижения теплового потока в испарителе, при понижении температуры в холодной камере расход циркулирующего хладагента уменьшается.

В бытовых холодильниках чаще всего вместо терморегулируемого расширительного вентиля используется капилляр. Он не меняет своё сечение, а дросселирует определённое количество хладагента, зависящее от давления на входе и выходе капилляра, его диаметра, длины и типа хладагента.

Большое значение имеет чистота хладагента: вода и примеси могут засорить капилляр или повредить компрессор. Примеси могут образовываться в результате коррозии внутренних стенок трубопроводов холодильника, а влага может попасть при заправке холодильника, либо проникнуть через неплотности (особенно в холодильниках с открытым компрессором). Поэтому при заправке тщательно соблюдается герметичность, перед заправкой хладагентом циркуляционный контур вакуумируется. В каждом холодильнике имеется фильтр-осушитель, который устанавливается перед капилляром.

Обычно также применяется простейший противоточный теплообменник, снижающий температуру жидкого хладагента от конденсатора перед подачей в испаритель. В результате в испаритель поступает уже охлаждённый жидкий хладагент, который затем ещё сильнее охлаждается в испарителе, в то время как хладагент, поступивший из испарителя, подогревается, прежде чем поступить в компрессор и конденсатор. Это позволяет увеличить тепловой КПД и производительность холодильника, а также предотвратить попадание жидкого хладагента в компрессор[5].

Принцип действия абсорбционного холодильника[править | править код]

Так же, как и в компрессионном, в абсорбционном холодильнике охлаждение рабочей камеры происходит за счёт испарения хладагента (чаще всего аммиака). В отличие от компрессионного холодильника, циркуляция хладагента происходит за счёт его растворения (абсорбции) в жидкости, обычно в воде. В одной единице объёма воды может быть растворено до 1000 ед. объёма аммиака. Насыщенный раствор аммиака из абсорбера поступает в генератор (десорбер), а затем в дефлегматор, где разлагается на аммиак и воду. Газообразный аммиак сжижается в конденсаторе и снова поступает в испаритель, а очищенная от аммиака вода поступает в абсорбер.

Для циркуляции воды в системе могут применяться разнообразные приспособления, например струйные насосы, что позволяет обойтись без движущихся частей. В систему холодильника добавляется также инертный к компонентам системы газ, например водород. В этом случае давление во всей системе почти одинаково, а испарение хладагента происходит за счёт изменения парциального давления.

Помимо аммиака и воды, могут использоваться и другие пары веществ — например, раствор бромистого лития, ацетилен и ацетон. Преимущества абсорбционных холодильников — бесшумность работы, отсутствие движущихся механических частей, возможность работы от нагрева прямым сжиганием топлива, недостатки — плохие удельные показатели хладопроизводительности на единицу объёма, чувствительность к положению в пространстве, а также недолговечность: трубопроводы такого холодильника относительно быстро засоряются продуктами коррозии. Кроме того, холодильный агрегат содержит ядовитый аммиак и горючий водород. Такие холодильники практически не используются в современных квартирах, но распространены в местах, где нет круглосуточного доступа к электричеству: например в домах на колёсах, где они работают от электричества на стоянках в кемпингах, а в пути работают от сжигания природного газа. Кроме того, абсорбционные агрегаты часто используются в промышленных холодильниках в тех случаях, когда более выгодно использовать энергию сгорания газа, а не электричество. Наиболее эффективно их использование в промышленности совместно с когенерационными установками, что позволяет утилизировать избыточное тепло и повысить КПД. В этом случае речь идет о так называемой тригенерации. Помимо этого, абсорбционные машины позволяют использовать сбросное тепло.

Принцип действия термоэлектрического холодильника[править | править код]

В основе работы термоэлектрического холодильника лежит Эффект Пельтье — когда при прохождении тока через контакт двух разнородных проводников в направлении контактной разности потенциалов происходит перенос тепловой энергии так, что один из этих «разнородных» проводников охлаждается, а второй нагревается за счёт тепловой энергии от первого и электрической энергии прошедшего электрического тока. Холодильник на элементах Пельтье бесшумен, надёжен и долговечен, но большого распространения не получил из-за дороговизны охлаждающих термоэлектрических элементов. Ещё одним минусом является зависимость холодопроизводительности от температуры окружающей среды. Тем не менее, сумки-холодильники, небольшие автомобильные холодильники и кулеры питьевой воды часто делаются с охлаждением от элементов Пельтье.[источник не указан 123 дня]

Принцип действия холодильника на вихревых охладителях[править | править код]

Охлаждение осуществляется за счёт расширения предварительно сжатого компрессором воздуха в блоках специальных вихревых охладителей[что?].[источник не указан 123 дня]

Распространения не получил из-за большой шумности, необходимости подвода сжатого (до 10-20 Атм) воздуха и очень большого его расхода, низкого коэффициента полезного действия. Достоинства — безопасность (так как не используется электричество и нет ни движущихся механических частей, ни опасных химических соединений в конструкции) долговечность, надёжность.

Устройство холодильного шкафа[править | править код]

Теплоизоляция[править | править код]

Стенки холодильного шкафа двойные, промежуток между стенками заполняется теплоизолирующими материалами: минеральной ватой, вспененным полистиролом или полиуретаном. От качества теплоизоляции зависит энергопотребление холодильника.

Полки[править | править код]

Продукты в холодильнике размещают на полках. Полки могут быть решетчатыми, что облегчает циркуляцию воздуха, либо стеклянными, позволяющими изолировать отделения друг от друга.

Дверь[править | править код]

С внутренней стороны двери для экономии места расположены дополнительные полки. На этих полках обычно хранят продукты в бутылках, консервы, а также яйца. Иногда на двери холодильника может располагаться ёмкость для напитков с выведенным на наружную поверхность патрубком с затвором, что позволяет использовать холодильник в качестве кулера. Во многих холодильниках навес двери съёмный, позволяющий выбрать направление открывания двери.

Уплотнитель двери[править | править код]

Для предотвращения попадания тёплого воздуха через щели между корпусом холодильника и дверью служит уплотнитель. Уплотнители современных холодильников оборудованы магнитной вставкой, что позволяет отказаться от механических затворов на двери холодильника.

Циркуляция воздуха в камерах[править | править код]

Холодильники бывают с естественной и искусственной циркуляцией воздуха. В последнем случае часто применяется так называемая технология «No Frost» — когда испаритель отделён от основной камеры и сообщение воздушных потоков между испарителем и камерой осуществляется с помощью вентилятора[6]. Благодаря этому удаётся избавиться от намерзания «шапки» инея на испарителе благодаря предварительному осушению воздуха, а также оттаиванию инея с испарителя без повышения температуры в камере. В некоторых холодильниках имеются специальные системы контроля за температурой и влажностью.

У некоторых холодильников имеется зона свежести — особая камера, в которой поддерживается температура 0 °C и повышенная влажность, иногда с возможностью регулировки — чтобы предотвратить высыхание помещённых в неё продуктов[источник не указан 123 дня].

Автоматика и электрооборудование[править | править код]

Терморегулятор[править | править код]

Бытовые холодильники обычно работают циклично, периодически включаясь и выключаясь. Моментами включения и выключения управляет терморегулятор.

Терморегулятор состоит из термодатчика, это может быть механический термодатчик сильфонного типа, либо электронный, и регулятора температуры, который может быть механическим или электронным, работающим по принципу триггера Шмитта.

В механическом терморегуляторе давление газа внутри термодатчика сильфонного типа поступает на пневмомеханический троичный (двухпороговый) компаратор с переключаемым порогом срабатывания.

Пневмомеханический троичный (двухпороговый) компаратор делит весь диапазон входных давлений газа внутри термодатчика сильфонного типа на три поддиапазона: давление включения, давление удержания включенного состояния и давление отключения. Давление удержания является состоянием хранения записанной в механический RS-триггер информации.

Пневмомеханический троичный (двухпороговый) компаратор переключает и механический RS-триггер и порог срабатывания пневмомеханического троичного (двухпорогового) компаратора. Механический RS-триггер управляет электрическим переключателем, контакты которого включают и выключают электродвигатель компрессора.

Таким образом механический терморегулятор является электромеханическим стабилизатором температуры с механическим триггером Шмитта с переключаемым порогом срабатывания и с контактной группой работающей как ключ и работает подобно ключевому стабилизатору напряжения с триггером Шмитта.[источник не указан 123 дня]

Пусковые и защитные реле[править | править код]

Для обеспечения правильного запуска двигателя используются пусковые и защитные реле, которые часто объединяют в один прибор.

Системы оттаивания[править | править код]

Дополнительно холодильники могут оснащаться системами оттаивания, предотвращающими образование инея на испарителе.

Датчики работающие при открывании двери[править | править код]

Для освещения холодильной камеры устанавливаются лампы небольшой мощности, которые включаются при срабатывании датчика открытия двери. Некоторые холодильники оснащены сигнализацией открытия двери, которая срабатывает по таймеру, чтобы предотвратить потери холодного воздуха если дверь холодильника забыли закрыть. В торговых же холодильниках датчик двери является относительным новшеством и служит для блокировки запуска компрессора при открытой двери.

В начале XXI века на рынке появились так называемые интернет-холодильники — холодильники, в корпусе которых расположен также подключенный к интернету компьютер, экран которого выведен на дверцу.[источник не указан 123 дня]

Компоновка[править | править код]

Существует несколько схем компоновки холодильников:

  • «европейская». При такой схеме морозильная камера находится снизу, под холодильной камерой;
  • «азиатская». При такой схеме морозильная камера, как правило небольших размеров, находится над холодильной камерой;
  • «американская» или side-by-side. При этом холодильное и морозильное отделение расположены по всей высоте устройства бок о бок. Объём устройства при этом может достигать 700 литров и более. Европейские производители обычно заказывают холодильники side-by-side у американских компаний.[источник не указан 3360 дней]
  • холодильный ларь, или горизонтальная — компоновка, наиболее характерная для морозильников. Такая компоновка позволяет уменьшить утечки холода при открытой крышке — такой морозильник может эксплуатироваться даже без крышки, например в супермаркете. Холодильные лари наиболее распространены в торговле.
  • вертикальный торговый холодильник без морозильной камеры. Имеет стеклянную дверь, обычно используется для торговли напитками.

Обозначения[править | править код]

На холодильниках обозначают температурный режим морозильной камеры в виде нескольких снежинок:

  • * — температура до −6 °C. Замороженные продукты можно хранить не более недели.
  • ** — температура до −12 °C. Замороженные продукты хранятся до месяца.
  • *** — температура до −18 °C. Хранение продуктов до 3-х месяцев.
  • *(***) — температура −18 °C и ниже, плюс быстрая заморозка свежих продуктов. Хранение продуктов до года.

По уровню потребления электроэнергии холодильники делятся на классы: (самое низкое потребление электроэнергии) A++, A+, A, B, C, D, E, F, G (самое высокое потребление электроэнергии).

Технические характеристики холодильников[править | править код]

  • масса, кг;
  • количество компрессоров;
  • корректированный уровень звуковой мощности (шум), дБ;
  • общий объём, л;
  • объём морозильной камеры, л;
  • температура хранения в морозильной камере, не выше, °С;
  • температура хранения в холодильной камере, °С;
  • номинальная потребляемая мощность, Вт;
  • суточное потребление электроэнергии, кВт*час/сутки;
  • годовое потребление электроэнергии, кВт*час/год;
  • мощность замораживания, кг/сутки;
  • время повышения температуры в морозильной камере до −9 °С при отключении электроэнергии;
  • наличие системы автоматического оттаивания;
  • наличие зоны свежести.
  • тип холодильной установки: пассивная / вентилируемая.

Эксплуатация холодильников[править | править код]

Для сохранения свежести продуктов необходимо соблюдать правила хранения продуктов в холодильнике. Современные холодильники имеют множество камер, предназначенных для хранения различных продуктов: в каждой камере поддерживается температура, оптимальная для того или иного типа продуктов. Но даже в простых холодильниках с естественной циркуляцией воздуха температура на полках различается, поэтому необходимо правильно размещать продукты.

В наиболее холодных (температура около 0 °C) зонах размещают скоропортящиеся продукты: свежее мясо, рыбу и так далее. Готовые блюда (салаты, кисели и т. д.) наоборот нужно хранить в отделениях с более высокой температурой (около +8 °C). Продукты с резким запахом (мясо, рыбу, некоторые фрукты), или продукты, легко впитывающие запахи (молоко, масло) хранят раздельно, желательно в закрытой (но не плотно) таре. Следует вовремя избавляться от испорченных продуктов.

Не следует ставить в холодильник без автоматического оттаивания продукты, температура которых значительно выше комнатной, так как большое выделение пара способствует быстрому нарастанию инея на испарителе, снижению эффективности работы и увеличению расхода электроэнергии. Последнее касается также и холодильников с автоматическим оттаиванием. Размораживать замороженные продукты рекомендуется в холодильной камере: разморозка занимает больше времени, но позволяет сэкономить электроэнергию.

Если холодильник не оснащён системой автооттаивания, его необходимо регулярно выключать для размораживания инея с испарителя. Но даже холодильники с автооттаиванием необходимо регулярно мыть и проветривать, чтобы предотвратить появление неприятного запаха[7]. При длительном отключении холодильника необходимо открыть дверцу и выложить все продукты. Также для борьбы с неприятным запахом используются различные поглотители запаха. Для этой цели можно также использовать активированный уголь, либо народное средство — несколько ломтей ржаного хлеба.

Согласно европейской статистике, для одного человека оптимален объём холодильника до 150 л, два-четыре человека — 200—280 л, пять и более человек — 300—320 л.

Ссылки[править | править код]

  • Холодильник домашний — статья из Большой советской энциклопедии. 
  • Холодильник домашний / Руссика. Ру по материалам БСЭ и wikipedia.com
  • Обзорная статья по истории холодильников

Источник: ru.wikipedia.org

Система охлаждения и принцип работы холодильной техники

Холодильники и морозильники всех марок работают по одному принципу. Охлаждающая система представляет собой замкнутое кольцо из тонких трубок:

  • Одна «рабочая» часть ее находится внутри, в камере холодильника, и называется испарителем. Испаритель спрятан «под обшивку» (так чаще бывает в холодильной камере) или уложен «змейкой» под полками (в морозилке).
  • Вторая часть системы расположена снаружи. Это конденсатор. Находится на задней стенке холодильника и выглядит как решетка или щит из тонких трубок.

И испаритель, и конденсатор в обычных бытовых холодильниках имеют форму змеевика. Это увеличивает площадь поверхности и позволяет им эффективнее поглощать тепло в камере и отдавать снаружи. Вся система заполнена хладагентом (как правило, это фреон). Он непрерывно циркулирует и постоянно меняет свое состояние, превращаясь то в газ, то в жидкость. Один цикл охлаждения состоит из двух основных этапов:

  1. Конденсация. При комнатной температуре фреон находится в газообразном состоянии. Но в конденсатор он накачивается под давлением и превращается из газа в жидкость (конденсируется). В процессе хладагент отдает тепло, то есть, на ощупь становится горячим. Проходя по длинным трубкам конденсатора, фреон охлаждается за счет окружающего воздуха и достигает комнатной температуры.
  2. Испарение. Далее хладагент течет в сторону испарителя. Но поступает в него не напрямую, а через капилляр – сильно суженный участок трубки. Когда фреон попадает в испаритель через такое узкое отверстие, его давление резко снижается. Из-за этого хладагент вскипает, переходя из жидкого состояния в газообразное (испаряется). В процессе испарения он поглощает огромное количество тепла, а на ощупь становится холодным. Проходя по трубкам испарителя, фреон «забирает» тепло из камеры, охлаждая воздух и продукты, находящиеся в ней.

ноу фростТемпература перехода из жидкого состояния в газообразное (точка кипения) у разных типов и марок хладагентов составляет -30…-150 °С. Но количество фреона в системе и площадь поверхности испарителя сравнительно небольшие, а его циркуляция периодически прерывается. Поэтому температура в холодильнике снижается всего до 0…+6 °С, а в морозильнике – до -6…-24 °С. Немного «подогревшись» в камере, газообразный хладагент движется к конденсатору, и цикл повторяется.

Перекачивает фреон мотор-компрессор, который справедливо называют сердцем холодильника. Он работает по принципу насоса и создает нужное давление в каждой части системы, заставляя хладагент «переносить» тепло из камеры наружу. Находится компрессор между испарителем и конденсатором, в него поступает только газообразный фреон.

Таким образом, главными функциональными элементами каждого холодильника являются:

  • мотор-компрессор;
  • конденсатор;
  • капиллярная трубка, или капилляр (медная труба длиной 1,5–3 м с внутренним проходом 0,6–0,85 мм);
  • испаритель.

Дополнительные элементы системы охлаждения

Кроме перечисленных узлов, в систему входят:

  • Фильтр-осушитель. Выглядит как утолщение между конденсатором и капилляром. Представляет собой медную трубку диаметром до 2 см и длиной 10–15 см, заполненную специальным влагопоглощающим веществом (цеолитом). Фильтр очищает проходящий через него хладагент от влаги и таким образом предотвращает засорение капиллярной трубки. Иначе при резком охлаждении фреона на выходе из капилляра находящаяся в нем вода замерзнет и перекроет просвет.
  • Докипатель. Алюминиевая или медная емкость между испарителем и компрессором. Здесь система охлаждения в очередной раз резко расширяется, заставляя вскипеть весь фреон, который мог остаться в жидком состоянии после прохождения через испаритель. Это необходимо для нормальной работы компрессора (он перекачивает только газ, а при всасывании жидкости может выйти из строя). Поскольку при дополнительном вскипании фреона снова поглощается тепло, докипатель устанавливают внутри холодильника, чаще всего в морозильной камере.

Другие обязательные компоненты прибора

Чтобы система охлаждения работала бесперебойно и с нужной интенсивностью, в конструкцию холодильника включают регулирующие элементы. Так, в агрегате обязательно есть:

  • Терморегулятор. Поддерживает температуру в камере на заданном уровне. Когда она уже достаточно низкая, терморегулятор размыкает электрическую цепь, отключая компрессор от питания. Охлаждение прекращается. Как только температура снова повышается до максимально допустимого значения, терморегулятор замыкает цепь. Компрессор снова начинает работать, охлаждая воздух в камере.
  • Защитно-пусковое реле. Запускает двигатель компрессора при включении холодильника и замыкании цепи терморегулятором. Отключает мотор при перегреве.
Отличия моделей с системой No Frost и без нее

В обычном холодильнике влага, попадающая в камеру, постоянно намерзает на стенках испарителя. Образуется иней, который мешает свободному доступу воздуха и нормальному охлаждению. Хладагент в системе циркулирует, но не может поглощать тепло из камеры из-за толстой снежной шубы. Результат – повышенная температура, которая приводит сразу к двум проблемам:

  1. Продукты портятся гораздо быстрее, чем должны.
  2. На повышенную температуру в камере реагирует терморегулятор. Он не приостанавливает охлаждение, заставляя компрессор работать непрерывно. А это приводит к его быстрому износу. Поэтому холодильники с капельными испарителями необходимо периодически размораживать.

Система No Frost позволяет избежать намерзания и постоянных разморозок. В нее входят:

  • электрический ТЭН;
  • таймер;
  • вентилятор;
  • система отвода талой воды.

В морозилке холодильника с No Frost испаритель расположен не в виде змеевика под каждой полкой, как обычно, а в виде компактного радиатора. Он может размещаться в любой части камеры. Чтобы устройство эффективно поглощало тепло из всей морозилки, используют вентилятор. Он стоит позади испарителя и постоянно прогоняет воздух через него. Холодный воздушный поток направляется на продукты и охлаждает их.

При этом вся влага из воздуха конденсируется на испарителе, и со временем на нем образуется иней. Но таймер системы No Frost не позволяет шубе стать слишком толстой. В нужный момент он запускает оттаивание: просто включает ТЭН, который размораживает иней. Оттаявшая вода стекает по трубкам в специальный поддон за пределами камеры. Оттуда она испаряется в воздух помещения.

Как правило, в бытовых холодильниках систему No Frost устанавливают только для морозилки. Реже встречаются модели, у которых ею оснащена также холодильная камера. Благодаря работе системы за холодильником нужно меньше ухаживать. Но постоянная циркуляция воздуха и интенсивное выведение влаги наружу приводят к тому, что продукты в камере с No Frost высыхают быстрее, чем в обычной.

Источник: remont-holodilnika.spb.ru

Кратко о типах оборудования

По принципу работы данное оборудование можно разделить на четыре вида:

  • Пароэжекторное, в качестве хладагента выступает, как правило, вода. Применяется в различных промышленных техпроцессах.
  • Абсорбционное, для работы использует не электрическую, а тепловую энергию.
  • Термоэлектрическое, на элементах Пельтье, широкое применение остается под вопросом ввиду низкого КПД (подробную информацию об этих устройствах можно найти на нашем сайте).
  • Компрессорное.

Именно последний вид оборудования широко используется в бытовых и промышленных агрегатах.

Компрессор для холодильника: принцип работы

Чтобы понять назначения данного аппарата, следует рассмотреть схему работы оборудования. Упрощенный вариант, где указаны только основные элементы конструкции, приведен ниже.

Принцип работы холодильной установки
Рис. 1. Принцип работы холодильной установки

Обозначения:

  • А – Испарительный радиатор, как правило, изготовлен из медных трубок и расположен внутри камеры.
  • B – Компрессорный аппарат.
  • С – Конденсатор, представляет собой радиаторную сборку, расположенную на тыльной стороне установки.
  • D – Капиллярная трубка, служит для выравнивания давления.

Теперь рассмотрим, алгоритм работы системы:

  1. При помощи компрессора (В на рис. 1), пары хладагента (как правило, это фреон) нагнетаются в радиатор конденсатора (С). Под давлением происходит их конденсация, то есть фреон меняет свое агрегатное состояние, переходя из пара в жидкость. Выделяемое при этом тепло радиаторная решетка рассеивает в окружающий воздух. Если обратили внимание, тыльная часть работающей установки ощутимо горячая.
  2. Покинув конденсатор, жидкий хладагент поступает в выравниватель давления (капиллярная трубка D). По мере продвижения через данный узел давление фреона снижается.
  3. Жидкий хладагент, теперь уже под низким давлением, поступает в испарительный радиатор (А), под воздействием тепла которого, он опять меняет агрегатное состояние. То есть становиться паром. В процессе этого происходит охлаждение испарительного радиатора, что в свою очередь привод к понижению температуры в камере.

Далее идет повторение цикла, до установления в камере необходимой температуры, после чего датчик подает сигнал на реле для отключения электроустановки. Как только происходит повышение температуры выше определенного порога, аппарат включается и установка работает по описанному циклу.

Исходя из вышеописанного, можно заключить, что данное устройство представляет собой насос, обеспечивающий циркуляцию хладагента в системе охлаждения.

Классификация компрессоров в холодильном оборудовании

Несмотря на общий принцип работы, конструкция механизмов может существенно отличатся. Классификация производится по принципу действия на три подтипа:

  1. Динамический. В таких устройствах циркуляция хладагента производится под воздействием вентилятора. В зависимости от конструкции последнего их принято разделять на осевые и центробежные. Первые устанавливаются внутрь системы, и в процессе работы нагнетают давление. Их принцип работы такой же, как у обычного вентилятора.
    Осевой компрессор
    Осевой компрессор

У вторых более высокий КПД за счет роста кинетической энергии, под воздействием центробежной силы.

Центробежный компрессор в разрезе
Центробежный компрессор в разрезе

Основной недостаток таких систем – деформация лопастей вследствие эффекта кручения, возникающего под воздействием крутящего момента. Динамические установки не применяются в бытовом оборудовании, поэтому для нас они не представляет интереса.

  1. Объемный. В таких устройствах эффект сжатия производится при помощи механического приспособления, приводящегося в действие двигателем (электромотором). Эффективность данного типа оборудования значительно выше, чем у винтовых агрегатов. Широко применялся до появления недорогих роторных аппаратов.
  2. Роторный. Этот подвид отличается долговечностью и надежностью, в современных бытовых агрегатах устанавливается именно такая конструкция.

Учитывая, что в бытовых устройствах используются два последних подвида, имеет смысл рассмотреть их устройство более подробно.

Устройство поршневого компрессора холодильника

Данный аппарат представляет собой электрический мотор, у которого вертикальный вал, конструкция размещается в герметизированном металлическом кожухе.

Внешний вид поршневого компрессора со снятым верхним кожухом
Внешний вид поршневого компрессора со снятым верхним кожухом

При включении питания пусковым реле мотор приводит в движение коленчатый вал, благодаря чему закрепленный на нем поршень начинает совершать возвратно-поступательное движение. В результате этого происходит откачка паров фреона из испарительного радиатора (А на рис. 1) и нагнетание хладагента в конденсатор. Данному процессу способствует система клапанов, открывающаяся и закрывающаяся при смене давления. Основные элементы поршневой конструкции представлены ниже.

Конструкция поршневого компрессора
Конструкция поршневого компрессора в виде схемы

Обозначения:

  1. Нижняя часть металлического кожуха.
  2. Крепление статора электромотора.
  3. Статор двигателя.
  4. Корпус внутреннего электромотора.
  5. Крепеж цилиндра.
  6. Крышка цилиндра.
  7. Плита крепления клапана.
  8. Корпус цилиндра.
  9. Поршневой элемент.
  10. Вал с кривошипной шейкой.
  11. Кулиса.
  12. Ползунок кулисного механизма.
  13. Завитая в спираль медная трубка для нагнетания хладагента.
  14. Верхняя часть герметичного кожуха.
  15. Вал.
  16. Крепление подвески.
  17. Пружина.
  18. Кронштейн подвески.
  19. Подшипники, установленные на вал.
  20. Якорь электродвигателя.

В зависимости от конструкции поршневой системы данные устройства делятся на два типа:

  1. Кривошипно-шатунные. Используются для охлаждения камер большого объема, поскольку выдерживают значительную нагрузку.
  2. Кривошипно-кулисные. Применяются в двухкамерных холодильниках, где практикуется совместная работа двух установок (для морозильника и основной емкости).

В более поздних моделях поршень приводится в действие не электродвигателем, а катушкой. Такой вариант реализации более надежен, за счет отсутствия механической передачи, и экономичен, поскольку потребляет меньше электроэнергии.

Обратим внимание, что поршневые аппараты не подлежат ремонту в бытовых условиях, поскольку их разборка приводит к потере герметичности. Теоретически ее можно восстановить, но для этого необходимо специализированное оборудование. Поэтому при выходе аппаратов из строя, как правило, производится их замена.

Устройство роторных механизмов

Если быть точным, то такие устройства необходимо называть двухроторными, поскольку необходимое давление создается благодаря двум роторам со встречным вращением.

Внешний вид двухшнекового (ротационного) компрессора
Внешний вид двухшнекового (ротационного) компрессора

Внутри компрессора фреон, попадая в сжимающийся «карман» выталкивается в отверстие небольшого диаметра, чем создается необходимое давление. Несмотря на относительно небольшую скорость вращения роторов, создается необходимый коэффициент сжатия. Отличительные особенности: небольшая мощность, низкий уровень шума. Основные элементы конструкции механизма представлены ниже.

Конструкция линейного роторного компрессора
Конструкция линейного роторного компрессора в виде схемы

Обозначения:

  1. Отводной патрубок.
  2. Отделитель масла.
  3. Герметичный кожух.
  4. Фиксируемый на кожухе статор.
  5. Обозначение внутреннего диаметра кожуха.
  6. Обозначение диаметра якоря.
  7. Якорь.
  8. Вал.
  9. Втулка.
  10. Лопасти.
  11. Подшипник на валу якоря.
  12. Крышка статора.
  13. Вводная трубка с клапаном.
  14. Камера-аккумулятор.

Источник: www.asutpp.ru


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.