Регулятор мощности нагревателя


Отличный регулятор мощности до трёх киловатт смастерим сами практически из хлама, но работать будет он не хуже, а местами даже лучше «фирменных». Никаких скачков напряжения, провалов и прочих неприятностей. В конце статьи будет видео ролик, в котором сможете убедиться своими глазами, что это действительно так.

Такое очень простое, и в то же время очень полезное устройство, можно применить для управления оборотами электродвигателей с фазным ротором. Например, электродрель старого производства, у которой нет встроенного регулятора оборотов, и ещё большого количества подобных инструментов и механизмов, которым не помешает регулировка оборотов, для расширения возможностей данного устройства.
Так же, такой регулятор отлично и бесступенчато регулирует мощность электрических нагревателей любого типа. Например, конфорки электроплиты, калориферы и тому подобное.

Регулятор может плавно менять освещённость ламп накаливания и диммируемых светодиодных в широких пределах от ноля до 100%.
Для начала монтажа устройства соберём детали.


Нам понадобится:
R1 – 20 Килоом, R3 — 3.3 Килоом, R4 – 300 Ом,
R2 – потенциометр — от 470 Килоом до 1 Мегаом,
C1 и C2 -0.05 МкФ, C3 – 0.1 МкФ,
T1 -динистор или ещё его называют диак DB3,
T2 – симистор или по другому — триак.
Симистор можно взять Советского производства из серии КУ208.
Или BT138-800, BT139-600 или им подобные, эти симисторы в Китае около 10 рублей за штуку, так же как и макетные платы, на которой мы и будем собирать данное устройство.

Макетная плата здорово облегчает и убыстряет монтаж электронных приспособлений. Не нужно заморачиваться с изготовлением и сверлением печатных плат. Просто вставляешь радиодетали в готовые отверстия, припаиваешь, соединяешь по схеме перемычками и готово.

Все конденсаторы и динистор можно выпаять из старых энергосберегающих ламп. Конденсаторы с нужными номиналами и динисторы есть не во всех лампах, так что нужно поискать. Динисторы в разных корпусах внизу второй фотографии (чтобы вы имели представление об их внешнем виде), а на корпусах у них написано DB3 (с лупой можно прочитать).

Потенциометр я взял от старого, ещё Советского телевизора, но подойдёт и любой другой с указанными номиналами.

Радиатор от компьютерного блока, но его нужно подбирать, в зависимости от планируемой нагрузки, которой вы собираетесь управлять. До 300 ватт – радиатор совсем не нужен, а чем выше нагрузка, тем массивнее радиатор. Размеры радиатора зависят и от характера нагрузки, так что подбор дело индивидуальное, но чем больше радиатор, тем лучше режим работы симистора и он будет работать дольше без аварий. Так что не скупитесь и поставьте побольше.


Резисторы везде есть, в любой аппаратуре, так что подобрать не составит большой проблемы. В Китае, тоже можно купить. 600 резисторов разных номиналов «набор», стоит около 150 рублей, вместе с доставкой, так что проще купить, чем заморачиваться с поиском и выпаиванием из блоков.

Клеммы для подключения питания и нагрузки можно взять любые, какие найдёте, но можно и вовсе обойтись без них, вопрос в удобстве использования данного устройства в эксплуатации.

Схема устройства выглядит так.

Цепочка R4 – C3 является защитой от радиопомех и её можете убрать, но соседи за это могут побить, если поймают.

Теперь приступаем к сборке.

Детали размещаем на макетной плате, так быстрее, на мой взгляд, удобнее и выглядит хорошо. Пайку выполнять нужно как можно более качественно и желательно не спеша.

Олово из Китая качественное не встречал, так что воспользуйтесь любым другим.

Симистор к радиатору прикрутить с теплопроводной пастой. Паста должна слегка выступить с краёв, когда вы прикрутите симистор к радиатору.

Перемычки (на схеме обозначенные красным цветом) выполняем медным проводом повышенного сечения, в зависимости от мощности нагрузки. На 3 киловатта — 2,5 квадратных миллиметра будет, с запасом, в самый раз. Я планирую управлять оборотами дрели на 800 ватт, и провод взял 1,5 мм, конечно тоже с запасом, но как говорится запас…. . И лучше будет работать.


На макетной плате, между контактами клеммных колодок, нужно удалить медные контакты во избежание короткого замыкания. 220 вольт – серьёзное напряжение и шутить с ним не рекомендуется. На фотографии видно как это сделать. Нужно острым предметом «например канцелярским ножом» срезать фольгу.

Подключаем лампочку в качестве наглядной нагрузки и кусок провода с вилкой для подключения к сети.

Когда устройство подключаете к питанию, действуйте предельно осторожно! Все элементы схемы находятся под полным напряжением сети 220 вольт! Опасно для жизни!

Работает штатно.

Вращением потенциометра регулируем свечение лампы и убеждаемся, что свет плавно, без провалов и рывков изменяет свою интенсивность.

Смотрите видео и убеждайтесь, что всё работает, как и планировалось.

Удачи вам в ваших делах.

Источник: USamodelkina.ru

Схема регулятора напряжения на 220 вольт

  • Регулятор мощности нагревателя
    Рисунок 1. Схема.

Схема состоит из симистора, BTA41-800B по названию можно определить его параметры ток и напряжение. Например BTA это обозначение симистора, 41 это его ток в амперах и 800B это его напряжение. Симистор можна заменить на более слабый ток для этого нужно мощность вашего тена разделить на напряжение, например: 2 кВт разделить на напряжение в сети 220 вольт мы получим нужный нам ток 2000/220=9,1 Ампер. В этом случае мы можем использовать другой симистор BTA12-600B, но так как симистор будет работать практически на пределах своих возможностей, он будет греться и придется закрепить его на радиатор, в противном случае он может выйти из строя.

  • Регулятор мощности нагревателя
    Рисунок 2. Схема с вольтметром.

Примечание.В схеме можно применять любой симистор не менее 600B и током в зависимости применяемого нагревательного элемента. В любом случае для облегчения работы симистора его следует разместить на радиаторе охлаждения. Дополнительно можно поставить вольтметр на выход схемы, чтобы видеть изменение напряжения наглядно и на вход поставить автомат на 16-25 ампер.


Детали для схемы:

1.Симистор выбираем от нагрузки но можете как в моем случае чем больше тем лучше BTA8-600b, BTA12-600b, BTA16-600b, BTA20-600b, BTA24-600b, BTA25-600b, BTA26-600b, BTA40-600b, BTA41-600b.

2.Потенциометр можно ставить в пределах от 470 кОм до 1 мегаом (МОм). Советую ставить потенциометр на 1 МОм так как у него больше диапазон регулировки, можно регулировать фактически до нуля. В начале я собрал схему с потенциометром на 500 кОм и в дальнейшем перепаивал на 1 мОм.

3.Динистор DB3 у него нет полярности припаиваем как хотим.

4.Резистор 10 кОм.

5.Конденсатор керамический 0,1 мкФ.

Изготовление схемы

  • Регулятор мощности нагревателя
    Рисунок 3. Схема в моем исполнение.

Для изготовления схемы нам понадобится в первую очередь паяльник, припой и канифоль и радио детали которые без труда можно приобрести в любом радио-магазине. Пожалуйста, уделяйте пристальное внимание, есть риск поражения электрическим током (как и во всем электрическом).

И так, для начала берем печатную плату и на ней располагаем компактно все детали после чего спаиваем все по схеме. Останется прикрепить симистор на радиатор. Я взял радиатор из старого блока питания телевизора. И останется самое сложное найти корпус и разместить схему в нем. На собирание схемы по времени у меня ушло буквально 15 минут.


  • Регулятор мощности нагревателя
    Рисунок 4. Схема регулятора мощности в моем исполнение.

Примечание. Эта схема часто встречается в пылесосах, китайских точильных станках.

  • Регулятор мощности нагревателя
    Рисунок 5. Регулировка с пылесоса.

Также можно заказать с сайта Алиэкспресс вот несколько вариантов. 1 вариант, 2 вариант по заверению китайца способен держать 5 кВт, 3 вариант в красивом корпусе с вольтметром, 4 вариант.

Как происходит процесс регулировки напряжения в дистилляторном аппарате.

На начальном этапе нагреватель включаем на полную мощность. После достижения температуры (78,8) градусов, что соответствует точки кипения этилового спирта, мощность нагревателя уменьшаем. Опытным путем меняя положения регулятора, нужно добиться того, чтобы весь выделяющийся пар конденсировался системой охлаждения. Это поможет избежать лишних потерь спирта и в то же время при правильно подобранной мощности позволит сократить время производства до возможного минимума.


Регулятор напряжения

Источник: prohelps.ru

Принцип работы регулятора на симисторе

Напомним, что симистором принято называть модификацию тиристора, играющего роль полупроводникового ключа с нелинейной характеристикой. Его основное отличие от базового прибора заключается в двухсторонней проводимости при переходе в «открытый» режим работы, при подаче тока на управляющий электрод. Благодаря этому свойству симисторы не зависят от полярности напряжения, что позволяет их эффективно использовать в цепях с переменным напряжением.

Помимо приобретенной особенности, данные приборы обладают важным свойством базового элемента – возможностью сохранения проводимости при отключении управляющего электрода. При этом «закрытие» полупроводникового ключа происходит в момент отсутствия разности потенциалов между основными выводами прибора. То есть тогда, когда переменное напряжение переходит точку нуля.

Дополнительным бонусом от такого перехода в «закрытое» состояние является уменьшение числа помех на этой фазе работы. Обратим внимание, что не создающий помех регулятор может быть создан под управлением транзисторов.


Благодаря перечисленным выше свойствам, можно управлять мощностью нагрузки путем фазового управления. То есть, симистор открывается каждый полупериод и закрывается при переходе через ноль. Время задержки включения «открытого» режима как бы отрезает часть полупериода, в результате форма выходного сигнала будет пилообразной.

Форма сигнала на выходе регулятора мощности: А – 100%, В – 50%, С – 25%
Форма сигнала на выходе регулятора мощности: А – 100%, В – 50%, С – 25%

При этом амплитуда сигнала будет оставаться прежней, именно поэтому такие устройства неправильно называть регуляторами напряжения.

Варианты схем регулятора

Приведем несколько примеров схем, позволяющих управлять мощностью нагрузки при помощи симистора, начнем с самой простой.

Схема простого регулятора мощности на симисторе с питанием от 220 В
Рисунок 2. Схема простого регулятора мощности на симисторе с питанием от 220 В

Обозначения:


  • Резисторы: R1- 470 кОм , R2 – 10 кОм,
  • Конденсатор С1 – 0,1 мкФ х 400 В.
  • Диоды: D1 – 1N4007, D2 – любой индикаторный светодиод 2,10-2,40 V 20 мА.
  • Динистор DN1 – DB3.
  • Симистор DN2 – КУ208Г, можно установить более мощный аналог BTA16 600.

При помощи динистора DN1 происходит замыкание цепи D1-C1-DN1, что переводит DN2 в «открытое» положение, в котором он остается до точки нуля (завершение полупериода). Момент открытия определяется временем накопления на конденсаторе порогового заряда, необходимого для переключения DN1 и DN2. Управляет скоростью заряда С1 цепочка R1-R2, от суммарного сопротивления которой зависит момент «открытия» симистора. Соответственно, управление мощностью нагрузки происходит посредством переменного резистора R1.

Несмотря на простоту схемы, она довольно эффективна и может быть использована в качестве диммера для осветительных приборов с нитью накала или регулятора мощности паяльника.

К сожалению, приведенная схема не имеет обратной связи, следовательно, она не подходит в качестве стабилизированного регулятора оборотов коллекторного электродвигателя.

Схема регулятора с обратной связью

Обратная связь необходима для стабилизации оборотов электродвигателя, которые могут изменяться под воздействием нагрузки. Сделать это можно двумя способами:


  1. Установить таходатчик, измеряющий число оборотов. Такой вариант позволяет производить точную регулировку, но при этом увеличивается стоимость реализации решения.
  2. Отслеживать изменения напряжения на электромоторе и, в зависимости от этого, увеличивать или уменьшать «открытый» режим полупроводникового ключа.

Последний вариант значительно проще в реализации, но требует небольшой настройки под мощность используемой электромашины. Ниже приведена схема такого устройства.

Регулятор мощности с обратной связью
Регулятор мощности с обратной связью

Обозначения:

  • Резисторы: R1 – 18 кОм (2 Вт); R2 — 330 кОм; R3 – 180 Ом; R4 и R5– 3,3 кОм; R6 – необходимо подбирать, как это делается будет описано ниже; R7 – 7,5 кОм; R8 – 220 кОм; R9 – 47 кОм; R10 — 100 кОм; R11 – 180 кОм; R12 – 100 кОм; R13 – 22 кОм.
  • Конденсаторы: С1 — 22 мкФ х 50 В; С2 — 15 нФ; С3 – 4,7 мкФ х 50 В; С4 – 150 нФ; С5 — 100 нФ; С6 – 1 мкФ х 50 В..
  • Диоды D1 – 1N4007; D2 – любой индикаторный светодиод на 20 мА.
  • Симистор Т1 – BTA24-800.
  • Микросхема – U2010B.

Данная схема обеспечивает плавный запуск электрической установки и обеспечивает ее защиту от перегрузки. Допускается три режима работы (выставляются переключателем S1):

  • А – При перегрузке включается светодиод D2, сигнализирующий о перегрузке, после чего двигатель снижает обороты до минимальных. Для выхода из режима необходимо отключить и включить прибор.
  • В — При перегрузке включается светодиод D2, мотор переводится на работу с минимальными оборотами. Для выхода из режима необходимо снять нагрузку с электродвигателя.
  • С – Режим индикации перегрузки.

Настройка схемы сводится к подбору сопротивления R6, оно вычисляется, в зависимости от мощности, электромотора по следующей формуле: . Например, если нам необходимо управлять двигателем мощностью 1500 Вт, то расчет будет следующим: 0,25/ (1500 / 240) = 0,04 Ом.

Для изготовления данного сопротивления лучше всего использовать нихромовую проволоку диаметром 0,80 или1,0 мм. Ниже представлена таблица, позволяющая подобрать сопротивление R6 и R11, в зависимости от мощности двигателя.

Таблица для подбора номиналов сопротивлений в зависимости от мощности двигателя
Таблица для подбора номиналов сопротивлений в зависимости от мощности двигателя

Приведенное устройство может эксплуатироваться в качестве регулятора оборотов двигателей электроинструментов, пылесосов и другого бытового оборудования.

Регулятор для индуктивной нагрузки

Тех, кто попытается управлять индуктивной нагрузкой (например, трансформатором сварочного аппарата) при помощи выше указанных схем, ждет разочарование. Устройства не будут работать, при этом вполне возможен выход из строя симисторов. Это связано с фазовым сдвигом, из-за чего за время короткого импульса полупроводниковый ключ не успевает перейти в «открытый» режим.

Существует два варианта решения проблемы:

  1. Подача на управляющий электрод серии однотипных импульсов.
  2. Подавать на управляющий электрод постоянный сигнал, пока не будет проход через ноль.

Первый вариант наиболее оптимален. Приведем схему, где используется такое решение.

Схема регулятора мощности для индуктивной нагрузки
Схема регулятора мощности для индуктивной нагрузки

Как видно из следующего рисунка, где продемонстрированы осциллограммы основных сигналов регулятора мощности, для открытия симистора используется пакет импульсов.

Осциллограммы входного (А), управляющего (В) и выходного сигнала (С) регулятора мощности
Осциллограммы входного (А), управляющего (В) и выходного сигнала (С) регулятора мощности

Данное устройство делает возможным использование регуляторов на полупроводниковых ключах для управления индукционной нагрузкой.

Простой регулятор мощности на симисторе своими руками

В завершении статьи приведем пример простейшего регулятора мощности. В принципе, можно собрать любую из приведенных выше схем (наиболее упрощенный вариант был приведен на рисунке 2). Для этого прибора даже не обязательно делать печатную плату, устройство может быть собрано навесным монтажом. Пример такой реализации показан на рисунке ниже.

Самодельный регулятор мощности
Самодельный регулятор мощности

Использовать данный регулятор можно в качестве диммера, а также управлять с его помощью мощными электронагревательными устройствами. Рекомендуем подобрать схему, в которой для управления используется полупроводниковый ключ с соответствующими току нагрузки характеристиками.

Источник: www.asutpp.ru


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.