Схема подключения паяльника с керамическим нагревателем


Электрические паяльники: виды и конструкцииСовременная электронная техника совершенствуется очень быстро. Степень интеграции современных микросхем такова, что в одном корпусе умещаются миллионы транзисторов, но сами корпуса становятся все меньше и меньше. Дискретные детали – транзисторы, конденсаторы, резисторы тоже малогабаритные, безвыводные. Все это монтируется на платах методом поверхностного SMD монтажа. Детали расположены настолько плотно, что припаять что-то обычным сорокаваттным электрическим паяльником ЭПСН просто невозможно.

Правда, некоторые специалисты от паяльника утверждают, что припаять все что угодно можно даже топором. Может быть это и так, но, как говорится, не всем дано. Поэтому лучше, все-таки, пользоваться паяльником, благо теперь существует очень широкий выбор паяльного инструмента. И к покупке этого инструмента надо подойти творчески, а не брать все, что попадется на глаза.


Прежде всего, необходимо определить, для каких работ покупается электрический паяльник. Если предполагается паять массивные детали, например, автомобильные радиаторы, медные трубки, жестяные конструкции – в общем, все то, что обладает большим теплоотводом, потребуется молотковый паяльник очень большой мощности. Такой паяльник часто называют «топором». Мощность таких паяльников достигает нескольких сотен ватт. Мощный паяльник типа «топор» показан на рисунке 1.

Рисунок 1. Молотковый паяльник мощностью 200Вт

Разумеется, что назначение такого паяльника весьма специфическое, не всегда и не везде он может понадобиться. Для применения в бытовых условиях больше подойдет паяльник мощностью 25…60Вт. Время от времени им можно выполнить практически все паяльные работы по ремонту бытовой техники и даже паять печатные платы с выводными компонентами. Внешний вид такого паяльника показан на рисунке 2.

Рисунок 2. Паяльник ЭПСН

Конструкция такого паяльника неразборная, о чем написано даже в прилагаемой к нему инструкции. Об этом паяльнике можно сказать, что его нагреватель достаточно долговечен, перегорает весьма редко, даже если пользоваться паяльником очень интенсивно. Чаще случается, что медное жало обгорает и приваривается внутри нагревателя настолько прочно, что достать его просто невозможно, в этом случае приходится приобретать новый паяльник.


Чтобы такого не произошло, рекомендуется периодически вынимать жало из паяльника и очищать его от продуктов окисления. При этом из самого паяльника высыпается черный порошок. Все это хорошо, когда читаешь, но в большинстве случаев об этом просто забывают, и еще вполне рабочий паяльник попросту выбрасывают.

Перед тем, как пользоваться новым паяльником кончик жала следует облудить. Для этого паяльник сначала надо разогреть, после чего в горячем виде снять окислы мелким напильником, быстренько макнуть зачищенный конец в канифоль, а затем в припой. В результате на рабочей поверхности жала остается капля припоя. Если этого не сделать, то жало почернеет, и расплавить припой попросту не удастся.

В процессе работы медное жало постепенно растворяется в припое, и на нем образуются раковины и появляются окислы. Работать таким жалом становится невозможно, и его снова приходится подправлять напильником и облуживать. И так до тех пор, пока от жала не останется маленький кусочек. Такое жало следует поменять.

Несколько меньше жало будет выгорать, если перед использованием его отковать молотком до нужной формы: на поверхности медного жала образуется наклеп, более твердый слой металла. Именно этот наклепанный слой более устойчив к выгоранию.


Самодельные конструкции электрических паяльников

Иногда случается, что паяльник, даже мощностью всего 25Вт, оказывается великоват, чтобы припаять маленькую детальку. В этом случае может помочь накрученная на жало медная проволока, как показано на рисунке 3.

Рисунок 3. Уменьшение размеров жала намоткой медной проволоки

Такое импровизированное жало следует сначала облудить, как было написано чуть выше. Конечно, такая конструкция недолговечна, но ее вполне хватает, чтобы сделать несколько паек.

В свое время радиолюбителями было предложено немало конструкций миниатюрных электрических паяльников. Многие из них были даже очень хороши, но, к сожалению, для их изготовления требовались некоторые токарные и слесарные работы. В домашних условиях сделать такой паяльник просто невозможно.

Но наши люди, проявив творческий подход, изобретают миниатюрные паяльники из подручных средств. Две таких конструкции были опубликованы в журнале «Радио» №1 2011. Первая из них показана на рисунке 4. Основой ее послужил выжигатель по дереву, которым многие пользовались в детстве.

Рисунок 4. Паяльник из выжигателя по дереву


Конструкция паяльника понятна из рисунка. Достаточно на спираль выжигателя плотно намотать медную проволоку диаметром миллиметра полтора и, естественно, облудить, ведь как-никак паяльник! Получившееся импровизированное жало очень напоминает конструкцию, показанную на предыдущем рисунке. Автор паяльника О. Иванов из города Владимира.

Неоспоримым достоинством такой конструкции является то, что температура выжигателя регулируется, а значит, есть возможность регулировать и температуру нагрева получившегося паяльника.

Автор другого импровизированного паяльника А. Филиппов из с. Нюксеница Вологодской области. Конструкция паяльника показана на рисунке 5.

Рисунок 5. Импровизированный паяльник А. Филиппова

В качестве паяльного жала используется медный провод диаметром 1,6 мм длиной около 60 мм, на который намотана «спираль» из медного же провода ПЭВ-2 диаметром 0,16 мм. Намотка выполнена виток к витку, отступив от жала на 8..10 мм, длина намотки примерно 35 мм. До первого включения роль межвитковой изоляции выполняет эмаль, которой покрыт провод.

После обгорания спирали роль изоляции выполняет появившийся на проводах окисел, что вполне достаточно при низком напряжении питания. Обратный конец паяльного стержня согнут кольцом и одним винтом прикреплен к эбонитовой ручке. Напряжение питания подводится гибким проводом сечением не менее 0,75мм2.


Питать паяльник следует через регулируемый стабилизатор тока с гальванической развязкой от сети. При напряжении питания около 5В потребляемый ток находится в пределах 2…2,5А, что обеспечивает достаточный нагрев медной «спирали». При таких параметрах мощность паяльника составляет P=U*I=5*2,5=12,5Вт.

Учитывая, что ток перегорания медного провода диаметром 0,16 мм составляет 6А, конструкция получается достаточно долговечной. Автор утверждает, что таким паяльником он пользуется несколько лет, хотя вначале конструкция задумывалась как одноразовая.

Самодельные электрические паяльники становятся достоянием истории, поскольку в настоящее время китайская промышленность освоила очень широкий ассортимент паяльного оборудования. Купить можно любой паяльник для любых целей. Паяльники, прежде всего, различаются конструкцией нагревателя.

Керамические и нихромовые нагреватели

При покупке электрического паяльника следует учесть тип нагревателя.

Нихромовый нагреватель представляет собой спираль, навитую на керамическое основание во внутреннее отверстие которого вставляется паяльный стержень. Некоторые, наиболее совершенные нагреватели имеют встроенную термопару, позволяющую стабилизировать температуру нагрева. Конструкция нихромового нагревателя показана на рисунке 6.


Рисунок 6. Нихромовый нагреватель

Здесь же показан и необгораемый паяльный стержень. Сам он сделан, конечно же, из меди, а снаружи покрыт слоем никеля. Такие стержни ни в коем случае не следует зачищать напильником для того, чтобы облудить, хотя многие пользователи жалуются, что лудятся такие жала плохо, припой на себе не удерживают.

Ничего не остается, как паять только с подачей припоя: в одной руке паяльник, в другой тонкая проволочка припоя, под ними плата. Да и то сказать, что под необлуженным жалом припой плавится плохо. Классическая пайка по методу окунул паяльник в припой, захватил каплю, перенес на плату, невозможна в принципе.

В чем же тут проблема, и как ее решить? Об этом рассказано здесь: Как облудить необгораемое жало у пояльника

Современные паяльники выпускаются, в основном, с керамическими нагревателями. Технология производства таких нагревателей достаточно сложна, и освоена несколькими знаменитыми фирмами. В первую очередь это только что упомянутая фирма Weller, Hakko, Ersa и некоторые другие.

Керамический нагреватель очень долговечен. Если обычный нихромовый нагреватель при пайке в промышленных масштабах (по нескольку тысяч паек за смену ежедневно) приходит в негодность через каких-то полгода, то керамические нагреватели служат годами, конечно, при условии аккуратного пользования.


Основным достоинством керамических нагревателей является высокая скорость нагрева: на рабочий режим паяльник выходит всего за 30 секунд. В принципе не особо важно, как скоро разогреется паяльник при первом включении. Эта скорость важна для работы терморегулятора, ведь чем быстрее греется жало, тем стабильней температура пайки.

На рисунке 7 показан нагреватель паяльника TechTool фирмы Ersa, предназначенный для использования в составе паяльных станций.

Рисунок 7. Керамический нагреватель фирмы Ersa

Нетрудно заметить, что область нагрева керамического нагревателя находится в конце полого жала, поэтому греется в основном та его часть, которая ближе к точке пайки. Совсем близко от точки пайки находится и термопара. Такое расположение термопары обеспечивает быструю реакцию электронного блока даже на незначительные изменения температуры в месте пайки. Вот тут то и сказывается большая скорость нагрева керамического нагревателя.

Замена жала осуществляется с помощью пластиковой рифленой гайки, которая остается холодной даже при разогреве паяльника до 400 градусов. Это позволяет производить замену жала всего за 30 секунд, не дожидаясь остывания паяльника. Вот такая вот высокотехнологичная вещь керамический нагреватель.


Паяльник TechTool удовольствие дорогое. Даже предложение его в интернет — магазинах «по низким ценам» выливается в сумму 7750 рублей (без электронного блока управления). Где низкими ценами не соблазняют, этот паяльник можно купить за 8 257,00руб. Но радиолюбителям пугаться таких цен не стоит, поскольку это цены на паяльники профессионального класса, предназначенные для непрерывной работы по целой смене.

Для любительских целей можно выбрать менее дорогие модели фирмы Ersa, например, паяльник с регулятором температуры PTC 70, внешний вид которого показан на рисунке 8. Даже не в самом дешевом магазине «Чип и Дип» за него просят 3710 рублей, что для хорошего инструмента не так уж и дорого.

Рисунок 8. Паяльник с регулятором температуры PTC 70

Для не очень частого пользования в любительских целях вполне подойдет и паяльник китайского производства: пусть он будет несколько хуже, зато цена радует. 

Сменные жала надеваются на керамический нагреватель и удерживаются пружинной защелкой. В ручке паяльника спрятан аналоговый стабилизатор температуры, датчиком которой служит сам нагревательный элемент, поскольку его сопротивление меняется с температурой нагрева.


Кстати, подобные стабилизаторы температуры предлагаются в радиолюбительских конструкциях для обычных паяльников типа ЭПСН. Колесико настройки температуры выведено на ручку паяльника, как показано на рисунке 9.

Рисунок 9. Ручка установки температуры паяльника PTC 70

Напряжение питания паяльника 220В, мощность нагревателя 75Вт. При таких параметрах керамического нагревателя температура жала будет поддерживаться весьма стабильно, паяльник не будет прилипать к плате, ведь чем мощнее нагреватель, тем быстрее нагревается жало.

Таким паяльником можно паять тонкие дорожки печатного монтажа и достаточно крупные детали не опасаясь перегрева или охлаждения паяльника. Для паяльника существует целый набор жал, пригодных для разных паяльных работ.

Некоторые производители прячут тончайшую нихромовую спираль внутри керамического цилиндра и называют такой нагреватель керамическим. Может это такой коммерческий прием, но нагреватель-то все равно нихромовый. В настоящем керамическом нагревателе греется сама керамика.

Паяльники с таким нагревателем часто тоже выполняются с термостабилизатором в ручке, но бывают и без него. Некоторые модели имеют встроенную термопару, пользоваться ими можно только при наличии внешнего электронного блока. Такие комплекты называются паяльными станциями.


Схема достаточно простой паяльной станции опубликована в журнале «Радио» 2008 №5 автор статьи А.ПАТРИН, г.Кирсанов Тамбовской обл. В авторском варианте используется паяльник Sl-30 от паяльной станции Solomon SL-30. Напряжение питания паяльника 24В при мощности нагревателя 48Вт. Но подойдет и любой другой паяльник с похожими параметрами.

Схема достаточно простая и доступная для повторения. Сигнал встроенной в паяльник термопары усиливается и подается на компаратор. Как только напряжение термопары достигает заданного уровня, нагреватель отключается. Для индикации выставленной температуры используется цифровой индикатор, хотя, в принципе, можно обойтись и без него. Прелесть данной конструкции в том, что не надо программировать микроконтроллер, которого в схеме попросту нет.

В статье приводится подробное описание схемы, рекомендации по наладке, приведены чертежи печатных плат. Все это поможет собрать такую паяльную станцию достаточно быстро и легко. Внешний вид авторского варианта самодельной паяльной станции показан на рисунке 10.

Рисунок 10. Внешний вид самодельной паяльной станции

Жало для паяльника

Современные паяльники комплектуются целым набором сменных жал, пригодных на все случаи жизни. Один из таких наборов показан на рисунке 11. Внешний вид паяльника SR971 показан на рисунке 12.

Паяльник при продаже комплектуется всего одним коническим жалом, поэтому остальные жала приходится покупать дополнительно. Мощность керамического нагревательного элемента 25Вт при напряжении питания 220В. Жало паяльника заземлено, что позволяет паять элементы чувствительные к статическому электричеству. Сменное жало устанавливается легко, что позволяет производить различные паяльные работы. Для этого достаточно открутить гайку с накатанной поверхностью, сменить жало и завернуть гайку обратно.

Форма ручки паяльника достаточно эргономична, вес паяльника невелик, работать таким инструментом достаточно комфортно. Единственно, что несколько омрачает все достоинства, это отсутствие встроенного регулятора мощности.

Рисунок 11. Комплект сменных жал для паяльника SR971 с керамическим нагревателем

Рисунок 12. Паяльник фирмы SOLOMON SR971

При работе с SMD компонентами совсем не лишне иметь жала типа «вилка» и миниволна: первое из них предназначено для пайки мелочевки типа резисторов и конденсаторов, а второе позволяет запаивать многовыводные детали в планарных корпусах, не опасаясь, что припой попадет между выводами.

На рисунках 13 и 14 показаны фрагменты таблицы с жалами фирмы Weller, по которым можно выбрать и заказать нужное жало. Кроме того, фирма Weller защищает свои жала лазерной гравировкой, поскольку развелось достаточно фирм, подделывающих оригинальные жала.

Применение таких контрафактных китайских жал нередко приводит в негодность паяльное оборудование, а паяльники фирмы Weller являются весьма дорогими. Даже те, кто занимаются пайкой на профессиональном уровне, не всегда отваживаются купить такое оборудование.

Рисунок 13. Жало типа «вилка»

Очень даже удобно: подводишь такое жало к резистору, греются сразу оба конца, и остается только снять деталь с платы.

Для подобных операций в арсенале паяльного оборудования существует специальный инструмент – термопинцет. Можно сразу нагреть деталь и снять ее с платы. По сути это два паяльника, объединенные в общую конструкцию. Стоит такой инструмент очень даже недешево, но, как показывает практика, можно обойтись и без него.

Рисунок 14. Жало типа «миниволна»

На рабочей поверхности жала имеется небольшое сферическое углубление (показано пунктиром), куда набирается расплавленный припой. Далее жалом проводят по выводам планарной микросхемы, естественно, установленной на плате, и запас припоя перетекает на выводы и дорожки платы.

Очень даже удобно, не надо тыкаться отдельно в каждый вывод микросхемы, все получается как бы само собой. Такая технология повышает производительность ручной пайки не менее, чем в десять раз, а также улучшается и качество.

Казалось бы, что такое жало можно элементарно сделать из обычного медного: всего-то и дел, что просверлить в нужном месте небольшое и не очень глубокое отверстие. Но вот как раз эти маленькие размеры приведут к тому, что такое жало быстро обгорит, от крохотного отверстия не останется и следа. Но если есть необходимость припаять одну – две микросхемы, то такое жало вполне подойдет.

Фирменная «миниволна» (как вариант «микроволна») выполнена с необгорающим хромовым покрытием, а кончик жала залуживается химическим способом. Смачиваемость такого жала великолепна, что является, пожалуй, самым главным условием качественной пайки.

Достаточно подробно технология монтажа – демонтажа микросхем в планарных корпусах описана в статье В. Баринова «Монтаж и демонтаж микросхем в малогабаритных корпусах с планарными выводами». Статья опубликована в журнале «Радио» №1, 2010, стр 25.

Индукционные паяльники

Все рассмотренные выше паяльники используют нагреватели различного типа, тепло от которых передается на паяльное жало, а для стабилизации температуры требуется электронная схема. Совсем по-другому устроены индукционные паяльники, у которых само жало разогревается высокочастотными токами, служит нагревательным элементом. И не надо никакого керамического или нихромового нагревателя. Схематическое устройство индукционного паяльника показано на рисунке 15.

Рисунок 15. Устройство индукционного паяльника

Паяльный стержень изготовлен из меди, а его задняя часть покрыта ферромагнитным сплавом из железа и никеля. На этой части жала расположена катушка индуктивности, питаемая напряжением с частотой 470КГц. Высокочастотные колебания наводят в сердечнике поверхностные токи, которые нагревают железо-никелевое покрытие, обладающее магнитными свойствами и достаточно большим, по сравнению с медью, электрическим сопротивлением. Сочетание этих свойств приводит к разогреву ферромагнитного покрытия.

Тепло от нагретого слоя разогревает весь сердечник, уходит внутрь, охлаждая ферромагнитный слой, ведь внутри сердечника-то медь! Нагрев покрытия происходит до тех пор, пока температура всего сердечника не достигнет точки Кюри. Это температура, при которой ферромагнитное покрытие теряет магнитные свойства. Если сказать проще, то обычный железный гвоздь, при соответствующей температуре, перестанет притягиваться обычным постоянным магнитом.

При потере магнитных свойств перестает действовать поверхностный эффект, а высокочастотные токи уходят внутрь медного сердечника, где не вызывают никакого нагрева. Поскольку медь не реагирует на магнитные поля, поглощение энергии из магнитного поля прекращается, прекращается и разогрев сердечника, поскольку температура жала достигает точки Кюри.

В процессе пайки жало отдает запасенное тепло на расплавление припоя и нагрев паяемых деталей. Температура жала падает ниже точки Кюри, магнитные свойства покрытия восстанавливаются, и начинается нагрев. При этом, чем массивней спаиваемые детали, тем быстрее стремится остынуть сердечник, тем дальше уход от точки Кюри, тем выше воздействие поверхностных токов.

Другими словами мощность нагрева, ее скорость адаптируется к условиям пайки: чем интенсивнее отбирается запасенное жалом тепло, тем интенсивнее происходит нагрев жала. Недаром такая технология нагрева называется Smart Heat, что можно перевести как «умное тепло». Разработка индукционного паяльника, как и самой технологии Smart Heat принадлежит американской компании Metcal.

Прелесть этой технологии еще и в том, что не требуется сложных электронных схем для поддержания температуры, ведь не секрет, что наиболее продвинутые паяльные станции управляются с помощью микроконтроллеров и имеют достаточно сложные схемы. А тут все происходит за счет самого паяльного жала! Достаточно только запитать его высокочастотным напряжением.

И вот тут может возникнуть вопрос: припои могут использоваться разные, температура плавления у каждого своя. Как же поменять температуру нагрева жала для конкретного типа припоя?

Оказывается, все просто. Паяльник комплектуется несколькими жалами-картриджами, каждый на свою температуру, которая зависит от химического состава ферромагнитного покрытия. Достаточно просто взять другой картридж, и с помощью разъема вставить его в ручку паяльника.

В основном используются картриджи серий 500, 600 и 700. Эти цифры указывают температуру нагрева по шкале Фаренгейта. Каждая серия имеет наборы жал различной формы, пригодные для выполнения всех паяльных работ. Но с точкой Кюри паяльники бывают не только индукционные.

Лет пятнадцать назад уже выпускались паяльники с механическим регулятором температуры. Нагреватель у них самый обычный нихромовый, но на заднем конце паяльного стержня имеется небольшая ферромагнитная таблетка, к которой притягивается магнит, управляющий работой микровыключателя. Как только жало разогревается до рабочей температуры, до точки Кюри, внутри паяльника раздается щелчок, и нагреватель отключается. При некотором понижении температуры снова щелкает контакт, жало начинает подогреваться.

Для того, чтобы изменить температуру нагрева в комплект паяльника входит несколько жал с различными температуры точки Кюри. 

Другие конструкции паяльников

Рассказ о паяльниках будет несколько неполным, если не упомянуть другие, можно сказать, экзотические типы. Прежде всего, это автономные паяльники, не требующие подключения к электричеству. Одни из них электричество все-таки потребляют от аккумулятора или даже батареек, встроенных в ручку.

Другие паяльники – газовые работают наподобие обычной газовой горелки, только греют паяльное жало. Если жало снять, то получается как раз газовая горелка.

По своим «паяльным» свойствам газовые паяльники едва дотягивают до не самых лучших электрических паяльников. Об этом говорят все, кому доводилось пользоваться этим чудом техники.

Единственное достоинство газовых и любых других автономных паяльников это независимость от электрической проводки: можно что-то припаять даже в чистом поле. Но, слава Богу, такие экзерсисы делать приходится не часто. Поэтому, лучше пользоваться электрическим паяльником.

Борис Аладышкин

Читайте также по этой теме: Как выбрать паяльную станцию

Источник: electrik.info

Обзор устройства паяльной станции Lukey 936D

Мой рассказ о паяльной станции в первую очередь адресован тем, кто ещё не имеет таковой и, возможно, желает в ближайшее время её купить.

Действительно, не каждый начинающий радиолюбитель начал практическое знакомство с электроникой, имея под рукой паяльную станцию. Многие учились паять и обычным электрическим паяльником.

Свой рассказ о паяльных станциях я начну с обзора паяльной станции Lukey 936D. Да, в продаже полно комбинированных паяльных станций (паяльник + фен), но термовоздушную паяльную станцию я купил ранее. Поэтому мой взор пал на паяльные станции без фена, только паяльник и ничего болееСхема подключения паяльника с керамическим нагревателем.

Вот так выглядит паяльная станция Lukey 936D. В комплекте идёт также подставка для паяльника и целлюлозная губка.

Аналоговая паяльная станция Lukey 936D с цифровой индикацией

Данная станция относится к аналоговым с цифровой индикацией. Микроконтроллеров в ней нет! Честно говоря, когда покупал, то смутно представлял себе устройство современных паяльных станций — для меня это был "чёрный ящик".

Глядя с верхушки нынешних знаний, отмечу, что цифровые паяльные станции лучше, хотя бы тем, что более точно поддерживают температуру жала. Уже гораздо позже я приобрёл цифровой паяльник с термостабилизацией.

В реальности устройство паяльной станции весьма простое. Чтобы связать невидимой нитью понимания теорию и практику, приведу вначале схему паяльной станции Lukey936D, а затем покажу фотки реальных деталей и элементы схемы.

Схема паяльной станции Lukey 936D.

Вот и схема Схема подключения паяльника с керамическим нагревателем.

Схема паяльной станции Lukey 936D

Кликните для увеличения по картинке (откроется в новом окне).

Пояснения к схеме:

  • Перемычка J1 — это встроенная в разъём подключения паяльника перемычка. Механический элемент защиты на случай, если паяльник не подключен.

  • Керамический нагреватель паяльника показан в виде конструктивно объединённого элемента из спирали нагревателя TH и тонкоплёночного термистора R.

  • Силовая часть показана отдельно: трансформатор T1, плавкий предохранитель F1 (F1AL250V) и выключатель питания SA1.

  • На схеме не показаны элементы защиты (ESD SAFE).

Теперь заглянем под "капот".

Схема индикации реализована на микросхеме DH7107GP (полный аналог ICL7107). Да, эта микросхема довольно часто применяется в измерительных приборах, но в данном случае она используется для отображения температуры с терморезистора (термистора). То есть в роли термометра.

Плата индикации температуры с россыпью семисегментных индикаторов.

Плата индикатора температуры паяльной станции Lukey 936d

Микросхема DH7107GP в панельке, + к параметру ремонтопригодность.

Микросхема ICL7107 на плате индикации паяльной станции Lukey 936D

В случае чего микросхему DH7107GP можно заменить даже отечественным аналогом — КР572ПВ2.

Микросхема ICL7107 и панель

На схеме я не стал приводить полную схему индикатора температуры, ограничился лишь обозначением модуля на схеме.

Силовая часть.

Силовая часть состоит из силового трансформатора мощностью где-то 60 — 70 Вт. Он имеет две вторичных обмотки. Одна вторичная обмотка выдаёт 26V — это для питания нагревателя паяльника и схемы управления. С другой снимается двухполярное напряжение 9V — оно необходимо для работы индикатора паяльной станции.

Силовой трансформатор паяльной станции

Плата управления.

А как же паяльная станция стабилизирует температуру жала? Ответ прост, вся изюминка в микросхеме HA17358 (она же LM358). Это операционный усилитель, который используется в качестве компаратора — то есть схемы сравнения. Гляньте на печатку, найдёте много знакомых радиодеталей. При желании и небольшом опыте такую станцию может собрать даже начинающий радиолюбитель.

Печатная плата паяльной станции Lukey 936D

В качестве задатчика температуры используется обычный переменный резистор на 100 кОм. Он устанавливается на передней панели. Из-за него бывают проблемы. Если цифры на дисплее постоянно скачут, то проверьте именно этот резистор. Возможно, отошёл или плохо "контачит" ползунок этого резистора.

Переменный резистор

На плате управления есть несколько подстроечных резисторов. На схеме они обозначены как PR1 и PR2. Без надобности крутить их не советую. Они задают режим работы станции.

Кроме прочего на основной печатной плате можно обнаружить диодный мост на диодах 1N4007 (или сборка DB107) и два интегральных стабилизатора положительной (L7805ABP) и отрицательной (79M05D) полярности на 5V. Двухполярное напряжение ±5V нужно для питания индикатора.

Интегральные стабилизаторы отрицательной и положительной полярности

По принципиальной схеме можно понять, как работает паяльная станция. Микросхема LM358 сравнивает эталонное, заданное оператором значение с тем, что оно получает от терморезистора в керамическом нагревателе. Далее если температура нагревателя ниже заданного, микросхема подаёт сигнал на открытие симистора VS1 (BT131-600 или 97А8). При этом индикаторный светодиод HL1 горит постоянно. Симистор VS1 открывает более мощный VS2 (BT-136-600E) и тот подаёт ток на нагревательный элемент TH1 керамического нагревателя.

После того, как нагреватель наберёт температуру, светодиод начинает мигать — на нагреватель подаются небольшие порции тока — лишь для поддержания нагрева. Если же паяльником не пользуются, то нагреватель полностью отключается от схемы питания. Это видно по потухшему светодиоду HL1.

Источник: go-radio.ru

Как то на первом курсе стал я счастливым обладателем паяльника ЭПСН25/24 (с питанием ~24В). И ничего мне для счастья больше не надо было. Через лет пять я успешно сжег трансформаторный блок питания (коснулся жалом к включенному самодельному ионизатору – прострелила искра и пошел дым…) в связи с чем трансформаторный БП был заменен на импульсный.

Но вот прошло 16 лет, наткнулся я на статью [1], и захотелось мне приобрести паяльник с вечным жалом и керамическим нагревателем. Но вот беда: к родному ЭПСН было уже много самодельных насадок – выбросить жалко, да и все найденные конструкции в интернете были слишком уж громоздкие, не хотелось такой гроб на стол ставить (работать приходится по ночам на столе в спальне – жена явно будет против такой обновки…).  Ну и некоторые сомнения были по поводу удобства необгораемых жал. Поэтому решено было сделать паяльную станцию, да такую, что бы поместилась в существующий корпус блока питания паяльника 80х55х65мм(без штырей вилки), да еще что бы можно было подключить к ней и старенький ЭПСН.

Сказано – сделано. Приобрел я паяльник Lukey-REZISTRONIK (21$) с нагревателем HAKKO 1321 (24V 48Wt датчик резистивный – при 25С ~50Ом) и дополнительным жалом Xytronic 44-510604/JP ( 6$ клиновидное 1.6мм).

Паяльник Lukey-REZISTRONIK и доп. жало

А в старенький ЭПСН была встроена термопара от китайского мультиметра. Поэтому схема разрабатывалась с учетом поддержки как термопарного датчика так и резистивного.
И вот что получилось…

Принципиальная схема паяльной станции

Схема паяльной станции

Размер платы контроллера (без БП) при применении SMD элементов составил всего 43х33мм.

Общий алгоритм работы

При включении контроллер запускает АЦП и считывает уровень напряжения на входах PC0, PC1. Если на обоих напряжение близкое к напряжению питания – паяльников нет, на дисплее высвечивается «Err» – ошибка. Если на одном из входов напряжение становится менее 4,5В выбирается соответствующий тип паяльника: для входа РС0 – термопарный, для РС1 – резистивный; и начинается набор температуры до значения уставки. Для каждого паяльника хранится своя уставка температуры.  При нажатии клавиши «больше» или «меньше» значение уставки текущего паяльника высвечивается на экране в мигающем режиме и  далее увеличивается/уменьшается на 5С. В процессе набора температуры мигает точка последнего индикатора. Когда температура приближается к значению уставки, точка перестает мигать и для резистивного паяльника гаснет, а для термопарного горит постоянно – так можно определить какой паяльник определился программой.

Мощность паяльника регулируется с помощью ШИМ модуляции с помощью ключа VT1. При включении паяльника мощность первоначально набирается плавно – для сохранения нагревателя паяльника. При проверке паяльника Lukey-REZISTRONIK выяснилось, что при напряжении 24В он светится в темноте – мне его стало жалко, и заполнение ШИМ для резистивного паяльника было ограничено до 70%. Для термопарного заполнение ШИМ 100%. Тем не менее паяльник Lukey нагревается от 25°С до 250°С за 60сек.

Алгоритм регулирования мощности следующий: при приближении к заданной температуре менее чем на 10С мощность подводимая к паяльнику уменьшается на 10% на каждый град.С. Для того, что бы точно выйти на заданную температуру в программе вводится температура смещения Tsm, которая принудительно смещает уставку до +–10°С. Первоначально смещение равно +2°С. Если температура паяльника находится в диапазоне (Задан.темпер+Tsm)>=Тек.темпер. >= ( Задан.темпер +Tsm − 10°С), тогда происходит постепенная коррекция смещения Tsm: если Задан.темпер.>Тек.темпер., то смещение Tsm увеличивается на 0,1°С, если Задан.темпер.<Тек.темпер., то смещение Tsm уменьшается на 0,1°С. Таким образом температура достаточно точно выходит на заданную, и колебания не превышают +–1°С. Это фактически аналог пропорционально-интегрального регулятора.

Усилитель сигнала термопары собран на специализированной микросхеме AD8551 по классической схеме. Когда паяльник с термопарой отсутствует, резистор R36 подтягивает не инвертирующий вход к «+» питания, в связи с чем, на ее выходе появляется +5В. – контроллер определяет отсутствие датчика. К сожалению, на плате не хватило места для включения AD8551 по стандартной схеме из даташита – с компенсацией температуры холодного спая, поэтому температура холодного спая задана жестко – 23°С и в программе не учитывается ее изменение. Желающие увеличить точность измерения могут включить DA3 по рекомендуемой схеме.

Измерение температуры резистивного датчика производится с помощью делителя образованного резистором R26 и терморезистором паяльника.

Вид платы паяльной станции

Детали и монтаж

Все примененные детали, кроме DA2 и VT1 – SMD. При проверке индикатора HL1 KOOHI E30361LC8W (с общим катодом) оказалось, что даже при токе 2 мА на сегмент, яркость свечения была достаточно интенсивной. Это позволило обойтись без дополнительных транзисторов, подключив катоды непосредственно к портам контроллера, так как суммарный ток не превышал разрешенные даташитом 40мА на порт. При недостаточной интенсивности свечения возможно уменьшение гасящих резисторов до 560Ом. Индикатор HL1 подпаян к плате тонкими проводами МГТФ, после чего закреплен с обратной стороны к ней же термоклеем.

L1,C3,C5 служат для дополнительной фильтрации питания контроллера, их значения некритичны. С9, С3 – танталовые. VT1 – любой аналогичный с допустимым током не менее 5А и порогом открывания не более 2В. На DA2 необходимо установить небольшой радиатор, для VT1 радиатор не требуется. R33, С10, С11, С12 – служат для фильтрации помех в измерительных цепях: их значения некритичны. SA1, SA2 – микрокнопки без фиксации, запаяны с обратной стороны платы (со стороны индикатора).

Если у кого-то не предвидится паяльник с термопарой – можно смело удалить из схемы C10, R36, R33,C11, R31, R32, R34, R35, DA3, однако вход PC0 нужно будет подтянуть к +5В резистором 10кОм.
Прошивка микроконтроллера производилась с помощью обычного LPT программатора, состоящего из 4-х резисторов (в интернете находится без особого труда). Запрограммированные фьюзы: CKSEL3=CKSEL2=CKSEL0=SUT0=0 – галочки.

Разъем на паяльнике заменен на металлический микрофонный 6-и полюсный – родной PS/2 не внушал доверия. К выводам 1-2 разъема подпаян нагреватель паяльника, а к выводам 3-4 и 5-4 термодатчики (соответственно для терморезистора и термопары). Плата, с предварительно закрепленным на ней индикатором, закреплена в корпусе с помощью термоклея.

Схема обратноходового импульсного блока питания была взята из какого-то журнала, и была собрана на основе 561ЛА7 в качестве задающего генератора с регулируемой скважностью импульсов через цепь обратной связи. Однако, к сожалению, с  годами схема была утеряна, и найти ее пока не удалось. Рекомендую собрать БП на специализированных микросхемах серии TopSwitch или Viper, например, по схеме [4]. Неоднократно собирал БП с этими микросхемами и ни разу не было проблем – запускались сразу.

На передней панели корпуса были сделаны отверстия под кнопки и дисплей. Рисунок панели был распечатан на прозрачной пленке для лазерных принтеров в зеркальном отображении, после чего на рисунок был наклеен двухсторонний белый скотч (белый!! иначе рисунка видно не будет) со стороны тонера  – кроме окна под индикатор. После этого полученный сэндвич обрезают по периметру рисунка и аккуратно наклеивают на корпус – что бы совпали отверстия и кнопки. С внутренней стороны отверстий под кнопки были уложены небольшие кружки из пленки – что бы толкатели кнопок не прилипали к скотчу. Проще всего если кнопки приклеить к передней панели термоклеем – тогда не нужно точно фиксировать плату с кнопками.

Фото паяльной станции

Настройка паяльной станции

Калибровку измерения температуры можно произвести в «железе», а можно программно. Для калибровки в «железе» канала измерения температуры термопары необходимо подогнать коэффициент усиления AD8551 подбором резисторов R34, R35. Для калибровки канала измерения температуры резистивного датчика необходимо подобрать R26.

Для программной калибровки нужно подобрать коэффициенты в строках 80..83:
Для резистивного датчика: const_rt0 – значение полученное АЦП контроллера при температуре датчика 0гр.С(т.е. смещение характеристики); const_drt – приращение количества шагов АЦП при изменении температуры в 100град.С (т.е. наклон характеристики).

Для термопары: const_THA0 – температура умноженная на 10 холодного спая термопары; const_THA — приращение количества шагов АЦП при изменении температуры в 100град.С.
Hex-коды прошивки контроллера, исходный проект на Си (для CodeVisionAVR V2.04.4a), схема и разводка платы (PCAD2006) прилагаются к статье.

P.S. Пользуюсь паяльной станцией и паяльником Lukey уже полгода и теперь берусь за ЭПСН только в случае крайней необходимости. Полностью согласен с автором [1], что жало идущее в комплекте с паяльником полностью бестолковое и годится только для коррекции пайки многовыводных SMD элементов. Паять им очень неудобно, и смачивается припоем оно плохо. Кроме этого олово на нем поднимается по острию вверх, а не остается на конце, чем создает дополнительные неудобства. А вот приобретенное клиновидное 1,6мм. жало очень удобное – им легко паять как SMD элементы, так и мощные транзисторы в корпусах типа ТО-220. После чистки о губку (кстати очень быстро и удобно) лудится оно мгновенно – подносишь припой и он сам растекается по кончику жала. Если посмотреть на фотографию жала – видно, что кончик жала покрыт чем-то вроде серебра, поэтому и лудится оно легко.

Литература

  1. DI HALT. Трактат о паяльниках. http://easyelectronics.ru/traktat-o-payalnikax.html
  2. Д. Мальцев. Термостабилизатор паяльника на микроконтроллере. Радио №2/2010
  3. Pavel V. Цифровая паяльная станция своими руками. http://www.radiokot.ru/lab/controller/10/
  4. Доработка паяльника от паяльных станций Lukey. http://www.mirmasterov.com/dorabotka-payalnika-payalki-lukey-702.html

Изменения в прошивке (от 02.02.2013):
1. Добавлено шесть кнопок памяти: выводы PD0,PD1,PB2,PB3,PB4,PB5.
2. Добавлен режим корректировки, с вводом поправочного коэффициента температуры.
3. Увеличена максимально задаваемая температура до 400С.
4. Увеличена максимальная мощность паяльника до 90%.
5. Улучшен переходной процесс при выходе на заданную температуру.
6. Добавлена возможность паять при отрицательных температурах.

Скачать прошивку, проект в CodeVisionAVR, печатные платы в P-CAD вы можете ниже

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
DA1 МК AVR 8-бит 1 Поиск в магазине Отрон В блокнот
DA2 Линейный регулятор 1 Поиск в магазине Отрон В блокнот
DA3 АЦП AD8551 1 Поиск в магазине Отрон В блокнот
VT1 MOSFET-транзистор 1 Поиск в магазине Отрон В блокнот
С3, С9 Электролитический конденсатор 100 мкФ 2 Поиск в магазине Отрон В блокнот
С4-С8, С10-С12 Конденсатор 100 нФ 8 Поиск в магазине Отрон В блокнот
R3 Резистор 1 Поиск в магазине Отрон В блокнот
R17-R24, R31, R32 Резистор 10 Поиск в магазине Отрон В блокнот
R25 Резистор 1 Поиск в магазине Отрон В блокнот
R26 Резистор 1 Поиск в магазине Отрон В блокнот
R33 Резистор 1 Поиск в магазине Отрон В блокнот
R34 Резистор 1 Поиск в магазине Отрон В блокнот
R35 Резистор 1 Поиск в магазине Отрон В блокнот
R36 Резистор 1 Поиск в магазине Отрон В блокнот
HL1 Индикатор E30361LCBW 1 Поиск в магазине Отрон В блокнот
L1 Катушка индуктивности 33 мкГн 1 Поиск в магазине Отрон В блокнот
SA1, SA2 Кнопка 2 Поиск в магазине Отрон В блокнот
Х1-Х5 Разъем 1 Поиск в магазине Отрон В блокнот
Х6 — Х7 Разъем 1 Поиск в магазине Отрон В блокнот
XS1 Разъем 1 Поиск в магазине Отрон В блокнот
Добавить все

Скачать список элементов (PDF)

Источник: cxem.net

Приветствую, Самоделкины!
В этой статье мы соберем очень простую и довольно надежную паяльную станцию.

На Ютубе уже полно роликов про паяльные станции, есть довольно интересные экземпляры, но все они сложны в изготовлении и настройке. В представленной здесь станции, все настолько просто, что справится любой, даже неопытный человек. Идею автор нашел на одном из форумов сайта «Паяльник» (forum.cxem.net), но немного ее упростил. Данная станция может работать с любым 24-х вольтовым паяльником, у которого есть встроенная термопара.

Теперь давайте рассмотрим схему устройства.
Условно автор разделил ее на 2 части. Первая, это блок питания на микросхеме IR2153.

Про нее было уже много всего сказано и на ней не будем останавливаться, примеры сможете найти в описании под видеороликом автора (ссылка в конце статьи). Если же неохота возиться с блоком питания, ее можно вообще пропустить и купить готовый экземпляр на 24 вольта и ток 3-4 ампера.

Вторая часть — это собственно мозги станции. Как уже говорилось выше, схема очень простая, выполнена на одной микросхеме, на сдвоенном операционном усилителе lm358.

Один операционник работает как усилитель термопары, а второй как компаратор.

Пару слов про работу схемы. В начальный момент времени паяльник холодный, следовательно, напряжение на термопаре минимальное, а это означает, что на инвертирующем входе компаратора напряжение отсутствует.

На выходе компаратора плюс питания. Транзистор открывается, идет нагрев спирали.

Это в свою очередь увеличивает напряжение термопары. И как только на инвертирующем входе напряжение сравняется с не инвертирующем, на выходе компаратора установится 0.

Следовательно, транзистор отключается и нагрев прекращается. Как только температура снижается на долю градуса, цикл повторяется. Также схема снабжена индикатором температуры.

Это обыкновенный цифровой китайский вольтметр, который измеряет усиленное напряжение термопары. Для его калибровки установлен подстроечный резистор.

Калибровку можно производить с помощью термопары мультиметра, или же по комнатной температуре.

Это автор продемонстрирует в ходе сборки.
Разобрались со схемами, теперь необходимо изготовить печатные платы. Для этого воспользуемся программой Sprint Layout, и начертим печатные платы.

В вашем же случае достаточно просто скачать архив (автор оставил все ссылки под видеороликом).
Теперь займёмся изготовлением опытного образца. Распечатываем чертёж дорожек.

Далее подготавливаем поверхность текстолита. Сначала с помощью наждачной бумаги зачищаем медь, а потом спиртом обезжириваем поверхность, для лучшего переноса рисунка.

Когда текстолит готов, размещаем на нем рисунок платы. Выставляем максимальную температуру на утюге и проходимся им по всей поверхности бумаги.

Все, можно приступать к травлению. Для этого готовим раствор в пропорциях 100 мл перекиси водорода, 30 г лимонной кислоты и 5 г поваренной соли.

Помещаем вовнутрь плату. А для ускорения травления автор воспользовался своим специальным устройством, которое он собрал своими руками ранее.

Теперь получившуюся плату необходимо очистить от тонера и просверлить отверстия под компоненты.

На этом все, изготовление платы закончено, можно приступать к запайке запчастей.

Запаяли плату регулятора, отмыли от остатков флюса, теперь можно подключать к ней паяльник. Но как это сделать, если мы не знаем где какой у него выход? Чтобы решить этот вопрос, необходимо разобрать паяльник.

Далее начинаем искать какой провод куда идет, параллельно записывая на бумагу, во избежание ошибок.

Также можно заметить, что сборка паяльника явно производилась на тяп-ляп. Флюс не отмыт и это нужно исправить. Исправляется это довольно легко, ничего нового, с помощью спирта и зубной щетки.

Когда узнали распиновку, берем вот такой штекер:

Далее проводами подпаиваем его к плате, а также припаиваем и другие элементы: вольтметр, регулятор, все как на схеме.

По поводу пайки вольтметра. У него имеются 3 вывода: первый и второй — это питание, а третий – измерительный.

Зачастую измерительный провод и провода питания спаяны в один. Нам необходимо его отсоединить для измерения низкого напряжения с термопары.

Также у вольтметра можно закрасить точку, чтобы она нас не сбивала. Для этого воспользуемся маркером черного цвета.

После этого можно производить включение. Питание автор берет от лабораторного блока.

Если вольтметр показывает 0 и схема не работает, возможно вы неправильно подключили термопару. Собранная без косяков схема начинает работать сразу. Проверяем нагрев.

Все отлично, теперь можно калибровать датчик температуры. Для калибровки датчика температуры необходимо отключить нагреватель и подождать пока паяльник остынет до комнатной температуры.

Далее вращая отверткой потенциометр, выставляем заранее известную комнатную температуру. Потом на время подключаем нагреватель и даем ему остыть. Калибровку для точности лучше провести пару раз.

Теперь поговорим о блоке питания. Готовая плата выглядит так:

Также к ней необходимо намотать импульсный трансформатор.

Как его мотать, можно посмотреть в одном из предыдущих роликов автора. Ниже вы сможете ознакомиться со скриншотом расчета обмоток, может кому пригодится.

На выходе блока получаем 22-24 вольта. То же самое мы брали с лабораторного блока.

Корпус для паяльной станции.
Когда платки готовы, можно приступать к созданию корпуса. В основании будет вот такая аккуратная коробка.

В первую очередь к ней необходимо нарисовать лицевую панель для придания так сказать товарного вида. В программе FrontDesigner сделать это можно легко и просто.

Далее необходимо распечатать трафарет и с помощью двухстороннего скотча закрепляем его на торце и идем делать отверстия под запчасти.

Корпус готов, теперь осталось разместить все компоненты внутри корпуса. Автор посадил их на термоклей, так как у данных электронных компонентов практически отсутствует какой-либо нагрев, поэтому они никуда не денутся, и прекрасно будут держаться на термоклее.

На этом изготовление закончено. Можно приступать к тестам.

Как видим, паяльник отлично справляется с лужением больших проводов и пайки габаритных массивов. И вообще, станция проявляет себя отлично.

Почему просто не купить станцию? Ну, во-первых, собрать самому дешевле. Автору, изготовление данной паяльной станции обошлось в 300 гривен. Во-вторых, в случае поломки можно без труда починить такую самодельную паяльную станцию.

После эксплуатации данной станции, автор практически не заметил разницы между HAKKO T12. Единственное чего не хватает, так это энкодера. Но это уже планы на будущее.

Благодарю за внимание. До новых встреч!

Видео:

Источник: USamodelkina.ru


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.